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Abstract

The common law is shaped by the cases that are litigated in court. We study the

incentives for litigants to influence legal evolution by strategically choosing which dis-

putes to litigate. In our framework, clarifying the law typically benefits defendants.

This creates a strict incentive for plaintiffs to settle cases, or to abandon legal claims

even when litigation is costless. When plaintiffs are regulators, we associate this sce-

nario with ‘regulator capture’. By contrast, defendants have an incentive to force

litigation, even in instances where plaintiffs would ordinarily not litigate, by generat-

ing ‘test cases’. We predict that settlement and regulatory capture is most likely when

regulators are sufficiently long-run oriented, whilst test cases arise when defendants

are. We analyze the welfare consequences arising from these dynamic incentives.
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Meeting, the 2019 Association of Public Economic Theory Annual Meeting, and the 2019 Canadian Law and
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1 Introduction

Within the common law tradition, courts are largely reactive institutions. Typically, they

do not “seek out specific interpretive occasions, but instead wait for others to bring matters

to their attention” (Fiss, 1984). Accordingly, “judge made” law can be viewed as a function

of the demand for judicial decisions by plaintiffs. Thus, the trajectory of how a particular

law evolves will depend on the “stream” of (relevant) cases that are brought before the court

by plaintiffs (Zywicki, 2012).

In the modern state, these plaintiffs are often regulatory agencies with strategic concerns

regarding the types of cases that they choose to litigate. For example, the Securities and

Exchange Commission’s (SEC) or the Federal Trade Commission (FTC) have, over decades,

prosecuted various firms for violating regulations within their respective purviews. For a

regulator taking a long-run view, the decision of whether to initiate litigation, and whether

to offer a firm a settlement, will reflect the regulator’s concerns, not only about outcomes

in the instant case, but of how future outcomes are affected. Thus, regulators may have an

incentive to strategically manipulate current enforcement actions to affect legal precedent

and, by extension, the court’s decisions concerning future enforcement actions.

Besides regulators, plaintiffs may also be special interest groups that take up either class

action law suites on behalf of the victims or other constitutes. Well-known examples of

such litigants are labor unions and the American Civil Liberties Union which have played an

important role in litigating on behalf of workers and civil rights. Likewise, de Poorter (De-

poorter, 2013) notes that the National Rifle Association “has a long tradition of financially

supporting selected disputes in litigation” in order to advocate on behalf of gun-owners.

Such long lived plaintiffs may selectively decide which cases to settle pre-trial and which

cases to pursue in court, in order to influence the precedent, which will in turn impact the

outcomes of future cases that they may litigate.
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Potential defendants can also affect the tragectory of the common law by inviting litigation.

For example, in the runup to the 2008 election Citizens United (a conservative non-profit)

invited litigation from a regulator, the U.S. Federal Election Commission (FEC), by creating

a documentary criticizing Hillary Clinton. In doing so, they invited the plaintiff (the FEC)

to charge them with violating the Bipartisan Campaign Reform Act (BRCA, popularly

known as the McCainFeingold Act ) which prohibits “electioneering communications” by

incorporated entities. The litigation that Citizens United invited upon themselves led to the

eponymous landmark ruling in Citizens United v. Federal Election Commission.1 Similarly,

Arizona’s immigration law SB 1070, was crafted in a way to provoke legal challenges in order

to have the supreme court clarify the limits of federal authority concerning immigration

Arizona v. United States.2 Test cases also arise in the area of intellectual property law and

patent protection, wherein firms patent a design that may invite litigation from competitors

in order to determine whether such aspects of a product’s design are patentable Apple Inc.

v. Samsung Electronics Co., Ltd..3 In these instances firms or other entities may “push the

legal envelop” in order to invite litigation and in doing so force the courts to clarify the law,

thereby shaping its evolution.

In this paper, we explore these avenues for plaintiffs and defendants to strategically ma-

nipulate the common law’s evolution to their respective advantage. Specifically, whether it

is plaintiffs or defendants who have incentive to settle out of court to avoid having legal

precedent established. And, whether plaintiffs or defendants have incentive to generate test

cases to “force the law” to evolve to their benefit. Thus, in a very broad sense we wish to

understand how actors can affect the path of the law, rather than passively respond or react

to the law.

This investigation must be contrasted with the extant literature in regulation, in which it is

generally assumed that legal actors take the law as “given,” and respond accordingly. Indeed,

1Citizens United v. Federal Election Commission, 558 U.S. 310 (2010).
2Arizona v. United States, 567 U.S. 387 (2012).
3Apple Inc. v. Samsung Electronics Co., Ltd., 137 S. Ct. 429 (2016).
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Galanter (1974) notes that most analyses of the legal system “start at the rules end... and

then see what affect [they] have on the parties.” The decision to settle provides a case in

point: legal actors can decide whether or not to settle out of court depending on whether

they seek to establish or avoid setting a precedent by going to trial. This incentive will

be especially strong for repeat players. As Galanter (1974) notes: “repeat players can play

for rules as well as immediate gains,. . . ”. That is, repeat players make decisions that not

only affect their immediate outcomes but also try to shape the law to improve their future

prospects and payoffs. Since regulators (and other interest groups) are often repeat players,

the decision to settle will not depend solely on the current net benefits relative to going

to trial, but also on how the court’s ruling (or lack thereof) affects their future ability to

regulate firms. Accordingly, our paper extends the extant literature by formalizing Galanter

(1974) to understand precisely how the concerns of long lived litigants affect the common

law’s evolution. Therefore, we examine whether and which plaintiffs have incentives to settle

when doing so prevents the law from being clarified, and how anticipation of these incentives

by the defendant affects their own decision-making, especially with respect to the intensity

of conduct that may harm third parties.

To investigate these issues we build on previous models that capture the evolutionary process

of the common law tradition (see Baker and Mezzetti, 2012; Niblett, 2013; Parameswaran,

2018). A firm’s production generates a negative externality. The marginal social cost of

this externality (and thus the socially efficient output level) is uncertain, but its distribution

is common knowledge. Given this uncertainty, the firm’s output will fall into one of three

possible categories: it may either be definitely below the socially efficient level, definitely

above the socially efficient level, or there may be ambiguity about whether the output is

above of below the efficient level. A welfare-maximizing court implements a negligence-type

rule, in which the firm is definitely not held liable in the first case (‘per se immunity ’), and

definitely held liable in the second (‘strict liability ’). The legal rule is silent in the region of

ambiguity. If a case arises in this region, an evidentiary trial may be held if a plaintiff brings
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the case to trial.

Plaintiffs in our framework are regulators or other special interest litigants who act as agents

of the victims and may seek legal action against the firm. Since cases in either the region

of immunity or strict liability are automatically decided, the decision to seek legal action is

critical only when confronted with a case in the ambiguous region. When confronted with

a case in the ambiguous region, the plaintiff can do one of three things: nothing, settle, or

take the firm to court. Thus, it is only in this region, and then only if the plaintiff brings

the case, that the court’s role is salient.

The above framework introduces a critical, relatively novel, feature of our model; namely,

that enforcement is jointly undertaken by both the court and the regulator. If the size of the

externality were known, then the regulator’s decision would amount to imposing a “Pigovian

tax” on firms that are liable, or implementing the optimal “Beckerian” (second-best) policy.

However, because the cost is unknown, the regulator can sanction firms that produce in the

ambiguous region only if the court finds them liable upon trial and investigation. Thus, the

regulator depends on the court to determine whether the firm is liable. Conversely, the court

is dependent on the regulator for its stream of cases. While the regulator cannot sanction

a firm without the court, the court can only decide upon cases that are brought before it

by the regulator. In this regard our paper departments from the extant literature (Baker

and Mezzetti, 2012; Parameswaran, 2018) in that enforcement is conducted jointly by two

strategic parties and the stream of cases brought before the court is not automatic but rather

determined by the strategic interests of the plaintiff.

To establish similarities and differences with previous models, we begin by establishing base-

line outcomes in a static model where there is no learning motive. We show that the firm will

either produce the largest output that is guaranteed to not attract litigation (the ‘safe out-

put’), or the output in the ambiguous region that optimally trades-off higher profits against

the penalty if held liable by the court. The ‘risky output’ is independent of litigation costs,
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and is unaffected by whether settlement is anticipated or not.

We then consider a two period game with a long lived plaintiffs and defendants. We find

that the plaintiff is willing to accept settlements that are smaller than the settlement amount

in the static game even in the absence of any direct court costs. Why? Clarifying the law

makes the plaintiff strictly worse off. Intuitively, with more information, the firm can make

choices that enable it to maximize profits at lower risk of being held liable. These choices

may still entail significant harms to the victim, although they are now more likely to go

uncompensated. As a result the plaintiff is willing to accept settlements that are smaller

than those in the static game.

For analogous reasons the defendant prefers to clarify the law by going to trial because it

enables it to produce the maximally safe quantity with impunity. How these two effects

influence the common law’s evolution depends on the patience of the litigants. First, if the

defendant is sufficiently patient relative to the plaintiff, then they choose a quantity that

is sufficiently high in order to “provoke” litigation. That is, they generate test cases which

force learning. Second, when defendants are relatively impatient compared to plaintiffs,

cases usually settle. However, even here because plaintiffs prefer to avoid trial, the quantity

chosen by the defendant is usually higher (and never lower) than what it would have been

in a static game.

Our model also enables us to analyze the welfare implications of the parties’ choices. We

identify two dimensions of efficiency: ‘static efficiency’, which measures the firm’s output

choice in each period relative to the stage game benchmark ideal; and ‘dynamic efficiency’,

which measures the extent to which the litigants choices result in greater clarity in the law

(which in turn incentivizes more statically efficient decision making in future periods). We

show that how well the equilibrium performs along each criterion is strongly affected by the

preferences and degree of long-run orientation of both the plaintiff and defendant.

Other dynamic models of judicial decision-making investigate how the common law evolves,
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and its the implications for efficiency. But their focus is on the understanding the welfare

implications when judges (or courts) have heterogeneous preferences (see Gennaioli and

Shleifer (2007), Ponzetto and Fernandez (2008), and Niblett (2013)). For example, Gennaioli

and Shleifer (2007) provide foundations for the Cardozo Theorem, which states that the

individual biases of judges tend to wash out as law is created piece-meal, and that legal

evolution is, on average, efficiency enhancing. Ponzetto and Fernandez (2008) similarly show

that the common law converges towards more efficient rules, making it more effective in the

long-run than statutory rule making. These models typically do not involve any uncertainty

about the ideal legal rule although the game is dynamic, there is no role for learning. In

a similar vein, Micelli (2010) studies how the common law evolves in the specific context

of strict liability and negligence in situations where one liability rule is sometimes more

efficient for society. He assumes that judges may be biased in favor of (or against) one form

of liability. Within this context he finds that the law does not evolve to the efficient legal

rule unless judges are efficiency minded (and unbiased). Indeed, in his framework biased

judges may prevent the law from evolving. While in that regard his paper is similar to ours,

the core focus is whether judges will allow the law to evolve. Whereas, in our paper judges

do not play a significant role. Rather, although judges are efficiency minded, the law does

not evolve because of the strategies of the litigants who choose which cases to bring to trial.

Accordingly, this article contributes to the literature on the efficiency of common law more

broadly. In a seminal article, Posner (1973) argued that the decisions of efficiency-minded

judges would tend to cause the common law to produce efficient rules. Subsequent articles

have examined why the common law may tend to efficiency, even if judges are imperfect in

their motives, information or execution. Priest (1977) and Rubin (1977) provide a ‘demand-

side’ argument, that inefficient legal rules are more likely to be litigated and subsequently

overturned, than efficient ones. Cooter and Kornhauser (1980) provide a formalization of

these arguments. By contrast, Hylton (2006) shows that information asymmetries between

litigants can cause biased rules, which favor the more informed party, to evolve. Zywicki

6



(2002) stresses the importance of ‘supply-side’ factors, such as institutional rules and norms,

in determining the efficiency of common law. Cooter et al. (1979) show that incremental rule-

making by courts can converge upon efficient rules, even if individual courts are imperfectly

informed about the ideal rule. Hadfield (2011) asks whether legal rules will dynamically

adapt to new or local conditions. By and large, the primary force that drives the law, in

these articles, is case selection (i.e. which cases are litigated). The opposite effect, of the law

driving the sorts of cases that arise, is typically left unexplored (although, see Png (1987)

and Parameswaran (2018)).

Besides contributing to the efficiency debate surrounding the common law, this paper is

also related to the growing literature that studies the role of learning in judicial decision-

making (see, in particular, Hadfield (1991), Baker and Mezzetti (2012), Fox and Vanberg

(2014), Callander and Clark (2017), Miceli (2010), and Parameswaran (2018)). Indeed, our

model setup is identical to Parameswaran (2018), except that that paper abstracts from the

possibility of settlement. All of the above papers focus on dynamic decision making by an

informationally constrained court that learns as it hears cases. A particular interest of these

papers is whether courts construe rules broadly versus narrowly, and the implications of these

choices for efficiency of the common law. Baker and Mezzetti (2012) and Callander and Clark

(2017). In Baker and Mezzetti (2012), the court trades off the benefit of learning from cases

against the explicit adjudication costs. When confronted with a case whose ideal disposition

is unknown, the court summarily dispose of the case if it is ‘close enough’ to an existing case

with known disposition, and investigate the case otherwise. The court, thus implements,

‘somewhat broad’ legal rules. Baker and Mezzetti (2012) show that, if adjudication costs

are not too high, the law will evolve incrementally and eventually converge to the ideal legal

rule. Parameswaran (2018) extends this analysis to explicitly include the agent behavior

that generates cases. He shows that with legal uncertainty, the stream of outputs chosen

by the firm will be biased away from the ex ante efficient level, which skews the court’s
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ability to learn.4 In effect, the adjudication costs in Baker and Mezzetti are replaced with

the implicit (bias) costs stemming from endogenous response to legal rules. Parameswaran

(2018) shows that the size of this implicit (bias) cost is itself endogenous and increases as

the law evolves, creating a dynamic where the law evolves for a finite period before settling.

Moreover, legal evolution stops before the court can implement the ideal legal rule.

Our model differs from each of these in that, whereas they are particularly interested in

optimal decision making by the court, we consider an essentially passive court. Instead, we

focus on the incentives for plaintiffs to settle under the shadow of the law, and for defendants

to generate test cases, and investigate how the static and dynamic efficiency of the law is

effected by these strategic actors.

This paper is organized as follows. Section 2 presents the basic legal framework. The third

studies the static game and the fourth studies the dynamic (two-period) game with long

lived plaintiffs. Section 5 considers two extensions and the final section concludes.

2 Model

We adapt the model in Parameswaran (2018). Consider a two-period game with three

players: a firm, a regulator and a court. In each period t ∈ {1, 2}, a risk neutral, profit-

maximizing firm must choose a quantity of output, qt, to produce. The firm’s gross (per-

period) profit from production is qt − 1
2
q2t , which is maximized at qmax = 1. Production

creates a negative externality that harms a victim. The size of the harm is θqt, where

θ ∈ (0, 1) is the constant marginal harm. Accordingly, the socially efficient level of output is

qeff = 1− θ < qmax, which implies that unregulated firms will over-produce. Since firms will

not produce the socially efficient output, there is scope for welfare-improving regulation.

4Hadfield (1991) makes a similar argument in an informal model, although her argument depends crucially
on agent heterogeneity.
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The regulator acts as an agent of the victims, on whose behalf it may seek compensatory

damages. Thus, the regulator takes the role of the plaintiff, whilst the firm is the defendant.

If θ were known, then the enforcement problem faced by a regulator is well-studied (see

Becker, 1968). Instead, in this context, the regulator cannot always summarily sanction a

firm because it will not always know with certainty whether the firm’s output is inefficiently

large or not. This uncertainty introduces the need for legal institutions (courts and the

common law) that clarify the law for all parties by determining whether actions of the firm

should be permitted or sanctioned. Thus, because of the uncertainty regarding θ, the court

and regulator jointly enforce this regulation.

We model this uncertainty by assuming that, when the game begins (at t = 1), all players

commonly believe that θ ∼ U [l1, u1], where 0 ≤ l1 < u1 ≤ 1. The uniformity assumption

simplifies the analysis, since it ensures that the posterior distribution of beliefs after learning

remains uniform. For similar technical reasons to Parameswaran (2018), we assume that

u1 ≤ 2+l1
3

.

Suppose, at period t, the agents believe that θ ∼ U [lt, ut]. Then all players know that an

output qt < 1 − ut will definitely not exceed the socially efficient level and that an output

qt > 1− lt definitely will. The players do not know whether quantities produced in the region

qt ∈ (1− ut, 1− lt) are inefficiently large or not.

An efficiency-minded court seeks to implement a negligence-type rule that holds the firm

liable only when it has produced more than the true socially efficient quantity qeff . Given

the uncertainty about θ, the court actually implements an incomplete negligence rule; it

holds a firm liable whenever it is sure that it has over-produced (i.e. if qt ≥ 1− lt) and not

liable whenever it is sure that it has not over-produced (i.e. if qt ≤ 1− ut). When the court

is uncertain about whether the firm has over-produced or not, it conducts an evidentiary

trial to determine how the case should be decided.5

5We follow Niblett (2013) in assuming that the court always implements narrow rules — i.e. it makes
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In the baseline analysis, we assume that learning at trial is partial: the agents merely learn

whether the firm overproduced (i.e. if qt > 1 − θ) or not. Hence, the learning technology

truncates the support of the belief distribution. If the players learn that qt was inefficiently

large (i.e. θ > 1− qt), then the posterior beliefs will be θ ∼ U [1− qt, ut]. By contrast, if the

players learn that qt was not inefficiently large (i.e. θ < 1 − qt), then the posterior beliefs

will be θ ∼ U [lt, 1 − qt]. These posterior beliefs will also be the players’ prior beliefs at the

beginning of the subsequent period t + 1. As an extension, we consider the stronger case

where learning at trial is complete, and the true θ is revealed to all players.

Let I(qt, lt, ut) denote the damages that the firm expects to pay if it produces output qt

and the case goes to trial. If qt ≤ 1 − ut, then the court summarily dismisses the case

and no damages are paid. If qt ≥ 1 − lt, then the firm will pay full expectation damages

E[θ]qt = 1
2
(ut + lt)qt. Finally, if qt ∈ (1− ut, 1− lt), the firm will pay damages provided that

qt > 1− θ. In expectation it pays:
∫ ut
lt
θqt1[qt > 1− θ] 1

ut−ltdθ. We have:

I(qt, lt, ut) =


0 if qt ≤ 1− ut

u2t−(1−qt)2
2(ut−lt) · qt if qt ∈ (1− ut, 1− lt)

1
2
(ut + lt)qt if qt ≥ 1− lt

Since our focus is on the strategic incentives to litigate (or not), we abstract from the assump-

tion that the plaintiff/regulator and defendant/firm face trial costs. Giri, I’m wondering

whether it makes sense to define static profits and J(.) here.

The timing of each stage game is as follows: First the firm produces output qt. The regulator

may then initiate litigation. If so, the litigants engage in a bargaining process (described

no commitment about how it will decide cases when the correct disposition is unknown. This is in contrast
to Baker and Mezzetti (2012) and Parameswaran (2018), where the court optimally implements broad rules,
by summarily disposing of certain cases, for which the correct disposition is not known, but about which it
has strong beliefs. Since our focus in this behavior is on the behavior of litigants and the strategic role of
settlement, we abstract from considerations of optimal behavior by the court itself.

10



below) which may result in an out of court settlement st. In the case of settlement, the firm

pays st to the regulator, and in doing so, both parties avoid trial and there is no learning.

If there is no settlement, then the regulator must decide whether to proceed to trial or to

drop the case. If the case proceeds to trial, then learning occurs as described above, and the

defendant becomes liable for compensatory damages if qt > qeff = 1− θ.

In the baseline analysis, we consider a simple bargaining framework, under which the plaintiff

makes a take-it-or-leave-it offer to the defendant, wherein the defendant pays the plaintiff

s ≥ 0 to settle out of court. As an extension, in Section 5.1, we consider a more general

bargaining framework in which s is determined by asymmetric Nash Bargaining between the

plaintiff and defendant, where the disagreement payoff is the subgame perfect payoff when

settlement fails. parameter φ ∈ [0, 1] captures the bargaining strength of the plaintiff. The

Nash bargaining approach includes, as special cases, the well studied scenarios where either

the plaintiff (φ = 1) or the defendant (φ = 0) can make a take-it-or-leave-it offer. Thus the

Nash Bargaining framework embeds our simplified baseline model as a special case. When

φ ∈ (0, 1), Imai and Salonen (2000) and Parameswaran et al. (2021) show that the Nash

Bargaining approach coincides with the limit case of bargaining between the players à la

Baron and Ferejohn (1989) as players can make arbitrarily rapid counter-proposals, where

φ is the plaintiff’s recognition probability.

The plaintiff and defendant discount the future according to discount factors δP and δD,

respectively, where δP , δD ∈ [0, 1]. If δi = 0 for agent i ∈ {P,D}, then we say that agent i is

myopic. The larger is δi, the more far-sighted the agent becomes, and the more weight they

put on future outcomes.

A strategy for the firm is a function qt ∈ [0, 1] that determines a quantity to be produced

in each period, as well as a decision at(qt, st) ∈ {0, 1} to accept or an offer st given qt. A

strategy for the plaintiff is a take-it-or-leave-it offer st(qt) ∈ R to settle out of court, as well

as a decision bt(qt) ∈ {0, 1} about whether to proceed to trial or to drop the case in the
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event that the offer is rejected. All these functions will generically be functions of beliefs

(lt, ut) and the discount factors (δP , δD). A quadruple {qt, st, at, bt} is a Bayesian Perfect

Equilibrium if, for each t:

1. qt maximizes the firm’s expected discounted stream of profits, taking as given the future

behavior of the plaintiff, the anticipated bargaining outcome, and the evolution of the

legal rule.

2. st maximizes the plaintiff’s payoff, taking as given the defendant’s acceptance strategy,

the plaintiff’s litigation choice, and the evolution of the legal rule.

3. at maximizes the firm’s expected discounted stream of profits, taking as given the

settlement offer, and the evolution of the legal rule.

4. bt minimizes the plaintiff’s expected discounted stream of uncompensated harms from

the externality, anticipating the evolution of the legal rule.

3 Static Benchmark

We begin by characterizing equilibrium in a static version of the game, where there are no

dynamic considerations. This will also be the equilibrium play in the second period (after

which the game ends) and in the first period of the game provided that δP = 0 = δD.

Without confusion, we omit time subscripts.

We solve the game by backward induction. First, consider the history where the firm has

produced q and the plaintiff’s settlement offer s has been rejected by the firm. The case

will proceed to trial whenever the expected value to the plaintiff I(q, l, u) from doing so is

positive. This will be the case whenever q > 1 − u. If q ≤ 1 − u, then the plaintiff is
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indifferent between litigating and not — and so by assumption will not — though her payoff

would be the same if she did.

Next, consider the firm’s decision to accept a settlement offer or not. The firm’s expected

payoff from rejecting the offer is −I(q, l, u) (which will be negative if q > 1 − u, and zero

otherwise). The firm’s payoff from accepting the offer is −s. Thus, the firm will accept a

settlement offer if and only if s ≤ I(q, l, u).

Now, consider the plaintiff’s optimal settlement offer. The plaintiff’s expected payoff from

making an offer that is rejected is I(q, l, u) (which will be positive if q > 1 − u and zero

otherwise). Thus an optimal settlement offer for the plaintiff must satisfy s ≥ I(q, l, u). Since

the firm will only accept offers with s ≤ I(q, l, u), the equilibrium offer must be s = I(q, l, u).

Intuitively, since litigation is costless, there is no positive surplus from settlement. Instead

settlement represents a zero-sum game, and any gains (over disagreement) to one player

must result in a loss (over disagreement) to the other. The only possible settlement must

coincide with the disagreement payoff. It will simply be the expected penalty from going to

trial. Given this offer, both the plaintiff and defendant are indifferent between having the

offer accepted and rejected, and by our assumptions, offers are accepted whenever the agents

are indifferent.

Anticipating this settlement dynamic, the firm will choose its quantity to maximize:

max
q
π(q, l, u) = q − 1

2
q2 − I(q, l, u)

Notice that this is identical to the problem that the firm would face in a world where the

possibility of settlement was absent. In the static game, settlements do not distort the firm’s

choice.

Let qA(l, u) = 1 − 1−(u−l)+
√

(1−(u−l))2+3u2

3
. This is the solution to the firm’s first order

condition when the firm produces in the region q ∈ (1 − u, 1 − l). It is easily verified that
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qA < 1− u+l
2

= qE, where qE is the ex ante socially efficient output. Uncertainty about the

law over-deters the firm, causing it to produce below the socially efficient level.

The firm’s equilibrium output choice is given by:

Lemma 1. The firm’s optimal static choice q∗(l, u) is given by:

q∗(l, u) =


qA(l, u) u− l > 1− u

1− u u− l ≤ 1− u

Lemma 1 is a special case of Proposition 1 in Parameswaran (2018). For a detailed explana-

tion of the properties of the proposition, we refer the interested reader to that paper. Here

we simply describe the main feature salient to this paper.

The firm’s decision amounts to choosing between two output levels, which we refer to as

the ‘safe’ and ‘risky’ options. The safe option is the highest output that will definitely not

attract litigation, q = 1−u. The risky option is the output that maximizes profit (including

expected penalties) within the ambiguous region (i.e. q = qA). It is never optimal to choose

an output for which the firm will definitely be penalized. Lemma 1 states that the firm will

choose the ‘risky option’ when there is a lot of uncertainty about the efficient quantity, and

will choose the ‘safe option’ otherwise. Choosing the risky option has the benefit of earning

the firm larger pre-penalty profits, but this comes with the risk of incurring a penalty. If the

safe quantity is too low, then the pre-penalty profits forgone from choosing the safe option

will be large, and this incentivizes the firm to choose the risky option. By contrast, if the

safe quantity is sufficiently large, the pre-penalty profits forgone will be low relative to the

expected penalty from the risk option, and so the safe option is preferred.

How large the safe output needs for it to be chosen depends the extent of uncertainty about

θ. Indeed, as uncertainty increases (i.e. u− l becomes larger) the safe output must also be

larger in order to be chosen in preference to the risky output. The intuition is that, as u− l
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becomes larger, a marginal increase in q increases the probability of having over-produced

by less. Moreover, when the degree of uncertainty is sufficiently small (u − l ≤ 1 − u), the

firm is guaranteed to choose the safe option.

Before moving the the dynamic analysis, we introduce some notation that will prove useful.

Let J(l, u) denote the expected residual harm suffered by the victim when the firm produces

the optimal static output q∗(l, u) after accounting for expected damages awarded at trial.

We have:

J(l, u) = q∗(l, u) · u+ l

2
− I(q∗(l, u), l, u)

Similarly, let Π(l, u) = π(q∗(l, u), l, u) denote the firm’s expected static profit (inclusive of

expected penalties at trial) when it produces the optimal static output q∗(l, u).

4 Dynamic Analysis

We now begin the dynamic analysis. Let δP , δD take generic values in [0, 1]. First, consider

behavior in the second period. Since the game ends after the second period, equilibrium

behavior will coincide with that in the static game, which we described in the previous

section.

4.1 Credible Trials and Learning

Now, move to the first period, and consider a history in which the firm has produced q1 and

has rejected the plaintiff’s offer s. The plaintiff must decide whether to proceed to trial or

drop the litigation. If either q1 ≤ 1−u1 or q1 ≥ 1− l1, then there will be no learning at trial,

so the second period outcomes will be independent of whether the case proceeds to trial or

not. Furthermore, if q1 ≤ 1−u1, then the victim recovers no damages from going to trial. In

equilibrium she will drop the litigation. By contrast, if q1 ≥ 1− l1, then the victim receives
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full expectation damages from going to trial without affecting second period outcomes; she

will definitely proceed to trial.

The more interesting case arises when q1 ∈ (1− u, 1− l). Here, the victim faces a trade-off.

On the one hand, proceeding to trial generates positive expected damages. On the other

hand, as we verify below, learning at trial harms the victim in expectation, since it allows

the firm to more finely target its second period output at a level that makes it less likely

to be penalized, thus leaving the victim to bear a larger share of second-period harms, in

expectation.

In deciding whether to proceed to trial, the plaintiff must trade-off the current expected

gains against the future expected losses. She will go to trial provided that:

I(q1, l1, u1)− δP
[
u1 − (1− q1)

u1 − l1
J(1− q1, u1) +

(1− q1)− l1
u1 − l1

J(l1, 1− q1)
]
> −δPJ(l1, u1)

I(q1, l1, u1) > δPAP (q1, l1, u1)

where AP (q1, l1, u1) = u1−(1−q1)
u1−l1 J(1− q1, u1) + (1−q1)−l1

u1−l1 J(l1, 1− q1)− J(l1, u1).

AP denotes the net expected second period loss that the plaintiff suffers from having a case

go to trial rather than not. The first two terms together represent the expected residual

second period harms born by the victim when there is learning (which depends on what is

learned), while the third term represents the same without learning.

Analogously, denote by AD(q1, l1, u1) the net expected gain to the defendant from going to

trial rather than not. We have:

AD(q1, l1, u1) =
u1 − (1− q1)

u1 − l1
· Π(1− q1, u1) +

(1− q1)− l1
u1 − l1

· Π(l1, 1− q1)− Π(l1, u1)

Lemma 2. Learning is beneficial to the firm and costly to the victim. Formally, AP (q, l, u) ≥

0 and AD(q, l, u) ≥ 0 for all q ∈ [1− u, 1− l].
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Lemma establishes that learning is beneficial to the firm and costly to the victim (in expec-

tation). It allows the firm to more finely target its second period output, thereby enabling it

earn larger profits whilst facing a lower risk of penalty. Precisely because it enables the firm

to more readily avoid sanction, it transfers more of the burden of harms onto the victim,

thus making her worse off.

Return to the victim’s decision about whether to proceed to trial in the event that pre-trial

bargaining fails. The victim must trade-off the expected benefit of receiving damages in

the current period against the expected future cost that stems from learning. Naturally,

the trade-off will depend on the size of the discount factor. In fact, as we establish in the

following Lemma, for any δP ∈ [0, 1] the trade-off always resolves in favor of going to trial,

whenever the plaintiff expects positive damages at trial (i.e. q1 > 1− u1).

Lemma 3. For any δP ∈ [0, 1], if q1 > 1−u1, then the plaintiff strictly prefers to go to trial

than to drop litigation.

Thus, if settlement fails, the case will proceed to trial whenever doing so gives the plaintiff

positive damages in expectation. In the dynamic game, going to trial is individually rational

for the plaintiff whenever it would be in the static game — dynamic considerations do not

distort the plaintiff’s incentive to litigate.

4.2 Settlement

Now, move to the settlement phase, anticipating that the dispute will proceed to trial when-

ever bargaining fails (assuming q1 > 1−u1). As discussed in the previous section, if q1 ≤ 1−u1

or q ≥ 1− l1, there is no possibility of learning, and so there are no dynamic linkages across

the periods. The incentives for all players reflect the incentives in the static game, and thus

the equilibrium settlement dynamic will match that in the static game.
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The more interesting case arises when q1 ∈ (1−u1, 1− l1), since in this scenario, learning will

occur if the case proceeds to trial. As we noted, this learning benefits the firm and harms the

plaintiff. The firm may nevertheless be willing to accept a settlement offer s provided that

what it saves in expected first period damages exceeds what it loses by preventing learning:

−s+ δDΠ(l1, u1) ≥ −I(q1, l1, u1) + δD

[
u1 − (1− q1)

u1 − l1
·Π(1− q1, u1) +

(1− q1)− l1
u1 − l1

·Π(l1, 1− q1)
]

−s ≥ −I(q1, l1, u1) + δDAD(q1, l1, u1)

The terms on the right-hand-side denote the firm’s expected (net) payoff from going to trial,

which is the sum of the current expected penalty I(q1, l1, u1) and the (discounted) future

gains to profit that stem from learning δDAD(q1, l1, u1).

The plaintiff/victim will accept a settlement s rather than going to trial if:

s− δPJ(l1, u1) ≥ I(q1, l1, u1)− δP
[
u1 − (1− q1)

u1 − l1
· J(1− q1, u1) +

(1− q1)− l1
u1 − l1

· J(l1, 1− q1)
]

s ≥ I(q1, l1, u1)− δPAP (q1, l1, u1)

The second line precisely expresses the trade-off of going to trial discussed above. The

current expected benefit of going to trial is I(q1, l1, u1), while the future (discounted) cost is

δPAP (q1, l1, u1). The net benefit of going to trial is the sum of these, and the plaintiff will

accept any settlement s that is strictly larger.

Combining these, we find that the surplus from settling is: δPAP − δDAD. The first term in

this difference represents the gain to the plaintiff from preventing learning, while the second

term represents the loss to the defendant from not learning. The surplus from settling will

be positive provided that:

δP
δD
≥ AD(q1, l1, u1)

AP (q1, l1, u1)
(1)

We refer to equation (1) as the settlement condition. The settlement condition requires that
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δP is large relative to δD — the plaintiff must value the future by relatively more than the

defendant, which ensures that the future benefits (to the plaintiff) of preventing learning

outweigh the costs (to the defendant).

If this condition is satisfied, then there exists a settlement s ≥ 0 that makes both agents

better off than going to trial. If so, we should expect settlement along the equilibrium.

Given our (simplifying) assumption that the plaintiff makes a take-it-or-leave-it offer to

the defendant, we should expect the plaintiff to extract the entire surplus from settlement,

leaving the defendant indifferent between settling or not. Thus, whenever settlement arises

along the equilibrium path, we should expected a settlement amount:

s(q1, l1, u1) = I(q1, l1, u1)− δDAD(q1, l1, u1)

Notice that s(q1, l1, u1) ≤ I(q1, l1, u1), and so, in equilibrium, the parties will settle for less

than the expected damages that would be awarded at trial in the first period. Intuitively,

since the plaintiff is harmed by learning, she will be willing to accept a lower settlement

to prevent the case from going to trial and learning from happening. Conversely, since the

defendant benefits from learning, she will be unwilling to acquiesce to a settlement, unless

it is much cheaper than the expected penalty that she would pay if she went to trial.

Finally, if the settlement condition (1) is not satisfied, then there is no settlement offer that

can satisfy both agents; at least one of the parties will be worse off from the settlement. The

agents will proceed to trial along the equilibrium path.

4.3 Firm’s Quantity

Finally, consider the firm’s choice of first period quantity, anticipating the settlement dy-

namics that follow. Recall, if there is a settlement, it leaves the defendant just as well as
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it would’ve been without a settlement. Thus, the firm’s decision making is tantamount to

maximizing its expected lifetime profit absent settlement. We have:

max
q1

π(q1, l1, u1) + δD [Π(l1, u1) +AD(q1, l1, u1)]

which is the sum of expected first period profits (inclusive of penalties) and the expected

second profits which depend on the firm’s first period learning.

By the first order conditions, we know that ∂π(q∗(l1,u1),l1,u1)
∂q

≤ 0.6 Hence, from the perspective

of first period expected profits, there is no incentive for the firm to choose a quantity above

the static benchmark q∗(l1, u1). By contrast, as we establish in the following lemma, from the

perspective of second period expected profits, the learning motive provides a strict incentive

to produce beyond the static benchmark.

Lemma 4. The following are true:

∂AD(q∗(l, u), l, u)

∂q
> 0 and

∂AD(qE(l, u), l, u)

∂q
< 0

Lemma 4 implies that the second period component of the firm’s lifetime profits is maximized

by choosing a riskier output than the optimal static choice q∗(l, u). (This follows since

∂AD(q∗(l,u),l,u)
∂q

> 0.) However this riskier output is not the one that maximizes learning in the

sense of minimizing the expected second period variance in beliefs about θ; instead learning

is maximized when q1 = qE — i.e. at the socially efficient output. Even when it is focused

purely on maximizing expected second period profits, the firm under-produces relative to

the efficient benchmark (q1 < qE). Doing so makes it more likely that it will receive ‘good

news’ at trial (i.e. that θ < 1−q1) and thus be able to produce a larger output in the second

period, than that it will receive ‘bad news’ (i.e. that θ > 1− q).
6In fact, the condition holds with equality when u1 − l1 ≥ 1 − u1, which implies an interior solution

q∗(l1, u1) = qA(l1, u1). However, when u1− l1 < 1−u1, there is a corner solution q∗(l1, u1) = 1−u1 at which
the first derivative may be negative.
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Of course, the firm must optimally trade-off the first period cost from choosing a risky output

against the second period gain. The firm’s optimal first period quantity satisfies:

∂π(q1, l1, u1)

∂q1
+ δD

∂AD(q1, l1, u1)

∂q
≤ 0 (2)

Furthermore, the condition will hold with equality, with the possible exception of cases where

the static best choice is a corner solution. (We will investigate this case further, below.)

Let q̂1(l1, u1, δD) denote the firm’s optimal first period output. At the optimal first period

output q̂1, we have ∂π
∂q
< 0 and ∂AD

∂q
> 0, so that the defendant produces a higher output than

a purely short-term oriented firm would, but a lower output than a purely learning-oriented

firm would. Naturally, as δD increases, the learning motive becomes more salient, and so

more patient firms will tend to produce larger outputs. This gives the following result:

Proposition 1. The firm’s equilibrium first period output q̂1(l1, u1, δ) satisfies q̂1 ∈ [q∗(l1, u1), qE(l1, u1)).

Additionally, q̂1(δD) = q∗ when δD ≤ δD(l1, u1) = max
{

0, 1−u1
u1−l1 − 1

}
, and q̂1(δD) is strictly

increasing in δD for δD > δD.

Similar to Lemma 1, the properties of the firm’s first period output choice depends on the

extent of uncertainty. If uncertainty is relatively large (i.e. if u1 − l1 > 1 − u1), then the

optimal output is an interior solution to the first order conditions and is strictly monotone

in δD. Indeed, for any δD, the firm will produce a ‘risky’ output that will leave it potentially

liable at trial, and this risky quantity rises as the firm becomes more patient. By contrast,

when uncertainty is relatively low (i.e. if u1 − l1 ≤ 1 − u1), then a sufficiently impatient

firm chooses the ‘safe’ output, making it immune to liability. Nevertheless, once it becomes

sufficiently patient (i.e. if δD > 1−u1
u1−l1 − 1), it will take risky actions that open it to liability.

Proposition 1 shows how the firm’s incentive to learn affects its first period choice. Relative

to the static baseline q∗(l, u), dynamic incentives cause the firm to produce a (weakly) larger

output. In doing so, the firm optimally trades-off the cost of higher expected penalties in the
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first period, against the benefit of higher second period profits which arise because the firm

can make choices with greater certainty about likely penalties. Importantly, the Proposition

shows that the ‘distortion’ (relative to the baseline) is in the direction of the ex ante efficient

output level. This follows because the stage-game efficient output level is also the one that

maximizes the benefit from learning. Finally, the size of the ‘distortion’ is increasing in

the firm’s degree of patience; more long run oriented firms will be more inclined to choose

outputs that incur a penalty in the first period, but which generate higher second period

benefits from learning.

4.4 Equilibrium

We are now ready to characterize the equilibrium of the game. There will be two cases to

consider, depending on whether the extent of uncertainty is small or large (which implicates

whether the optimal solution is possibly at the the corner or interior).

Proposition 2.A. Suppose the extent of uncertainty is small (i.e. u1 − l1 ≤ 1 − u1) and

define δ̃P (δD) = u1+1−q̂1(δD)
l1+1−q̂1(δD)

δD. Then:

1. If δD ≤ δD(l1, u1), then the firm’s first period quantity will be q̂1(l1, u1, δD) = q∗(l1, u1) =

1− u1. The plaintiff will not initiate litigation along the equilibrium path.

2. If δD > δD(l1, u1), then the firm’s first period quantity will be q̂1(l1, u1, δD) > q∗(l1, u1) =

1 − u1. There will be litigation along the equilibrium path. There will be settlement if

δP ≥ δ̃P (δD); otherwise the parties will proceed to trial. Additionally, the locus δ̃P (δD)

is strictly increasing in δD.

Proposition 2.A divides the parameter space into three regions. As we showed in Proposition

1, when the defendant is sufficiently impatient (i.e. δD ≤ δD), then the firm chooses the safe

level of output and there is no litigation or learning. If instead the defendant if patient enough
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δD

δP

1

1
δ̃P (δD)

δD(l1, u1)

No Litigation

q̂1 = 1− u1

Settlement
q̂1 > 1− u1

Trial
q̂1 > 1− u1

Case A: u1 − l1 ≤ 1− u1

δD

δP

1

1
δ̃P (δD)

Settlement
q̂1 > qA(l1, u1)

Trial
q̂1 > qA(l1, u1)

δD(l1, u1) = 0

Case B: u1 − l1 > 1− u1

Figure 1: The left and right panels show the litigation dynamics when u1 − l1 ≤ 1 − u1
and u1 − l1 > 1 − u1 (respectively). The key difference is that, in the former case, there
may be no litigation at all. The dashed red line in the right panel represents the counter-
factual settlement condition when the firm produces the statically optimal output qA, but
the settlement decision is dynamically optimal.

(i.e. δD > δD), then the firm chooses a quantity above the safe level which makes litigation

credible, since the plaintiff can now expect positive expectation damages. Consistent with

the settlement condition, when the plaintiff is relatively more patient than the defendant,

the plaintiff’s incentive to settle dominates — she will accept a much lower settlement offer

than would be optimal in the static game, which makes settlement optimal for the defendant

(despite forgoing the benefits of learning). By contrast, when the defendant is relatively more

patient, the defendant’s incentive to learn dominates. There is no (incentive compatible)

settlement offer that the plaintiff can make that the defendant would accept; the case will

go to trial. These three regions are represented in Panel A of Figure 1.

Proposition 2.B. Suppose u1 − l1 > 1 − u1. The firm’s first period output will be larger

than in the static baseline: q̂1(l1, u1, δD) > q∗(l1, u1) (unless δD = 0). Along the equilibrium

path, there will be settlement if the plaintiff is sufficiently patient relative to the defendant

— i.e. if δP ≥ δ̃P (δD), where δ̃P (δD) = AD(q̃1(l1,u1,δD))
AP (q̃1(l1,u1,δD))

δD.
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Proposition 2.B is analogous to Proposition 2.A, except that the firm will always produce a

risky output and so the plaintiff will always initiate litigation. The difference arises because

when the degree of uncertainty is relatively high (i.e. u1−l1 > 1−u1), even in the static game,

the defendant will choose the risky output, which makes litigation incentive compatible. By

contrast, when the degree of uncertainty is low (i.e. u1 − l1 < 1 − u1), the defendant will

make the safe choice in the static game and indeed, even in the dynamic game unless it is

sufficiently forward looking.

Several features of the equilibrium are worth noting. First, the model predicts both settle-

ments and trials along the equilibrium path, depending on the relative degrees of patience

of the plaintiff and defendant. Results are stark in two focal extremes: if the plaintiff is

long-run oriented whilst the defendant is short-run oriented, then settlement is likely along

the equilibrium path. This may well capture the dynamic between regulators (who take the

long-run view) interacting with a sequence of short-run oriented firms. If so, the dynamic

incentives will cause the parties to settle out of court, leaving the law unsettled and hamper-

ing legal evolution. By contrast, if the roles are reversed so that the regulator is short-run

oriented whilst the defendant is forward looking, then cases will tend to go to trial. Legal

evolution requires that the more long-run oriented party also be the one most invested in

having the law clarified.

Second, dynamic considerations will generally cause the firm to produce a riskier output

than it would if it were purely present biased. Since the firm benefits from learning, it has a

strong incentive to test the boundaries of the law, enabling it to make choices with greater

certainty in the future if the case goes to trial. This dynamic is most clear in Case A where

the extent of uncertainty of small, such that the firm would choose the safe output in the

static model, but instead chooses a risky one in the dynamic model (provided that it is

sufficiently patient).

Third, and somewhat more subtly, dynamic incentives for the firm result in an output choice
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that make settlement less likely (than would have been the case had the firm made the

optimal static choice). To fix ideas, take Case B where the extent of uncertainty is relatively

large, and where even in the static model, the firm would choose the risky output qA(l1, u1)

and thus litigation would arise. Consider the counterfactual dynamic game in which the firm

continued to produce qA, but where the subsequent litigation and settlement choices were

dynamically optimal for the parties (i.e. the costs and benefits of learning were appropriately

accounted for). The dashed red line in the right panel of Figure 1 represents the settlement

locus in this counterfactual. Notice that the dashed line lies below the true settlement locus

that arises in equilibrium. Thus, for any δD, there will be a range of δP for which the parties

would have settled in the counter-factual where the firm made the statically optimal choice,

but instead go to trial in equilibrium because the firm’s dynamically optimal choice was

riskier.

Fourth, notice that the defendant’s first period output choice depends only on her own

degree of patience, and is independent of the plaintiff’s. This followed from our assumption

that the plaintiff could make a take-it-or-leave-it settlement offer to the defendant, which, in

equilibrium, would leave the plaintiff indifferent between settling and going to trial, whenever

settlement was equilibrium consistent. Thus, the firm’s equilibrium payoff is identical to a

counter-factual model where settlement was disallowed and litigation always proceeded to

trial. (We discuss the implications of relaxing this assumption in Section 5 below.)

Before concluding this section, we explore some efficiency implications of the dynamic model.

In doing so, we distinguish two dimensions of efficiency. The first, ‘static efficiency’, is an

intra-period notion efficiency which measures how close the firm’s first period output is to

the efficient benchmark qE(l1, u1) = 1− u1+l1
2

. The second, ‘dynamic efficiency’, is an inter-

period notion of efficiency related to how much learning occurs in the first period (which

in turn enables greater second period ‘static’ efficiency). We note that these two efficiency

notions need not be in conflict: on both dimensions the efficient choice is for the firm to
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choice qE(l1, u1) in the first period.

Fix the plaintiff’s degree of patience δP . Proposition 1 shows that the firm’s first period

output becomes more statically efficient as the defendant becomes more patient (i.e. as δD).

The firm’s incentive to learn causes it to better internalize the externality it imposes on

the victim, thereby producing an output closer to (but not at) the efficient benchmark qE.

Propositions 2.A and 2.B show that as the firm becomes more patient, the ‘likelihood’ of the

case proceeding to trial and thus resulting in legal evolution, increases.7 This is the extensive

margin of dynamic efficiency. Additionally, there is an intensive margin: as δD increases,

the extent of learning increases (in the sense of reducing the variance in beliefs about θ by

a larger amount).

Taken together, we have shown that equilibrium outcomes are most efficient (though never

achieve the efficient benchmark) when the defendant is increasingly patient but the plaintiff

is relatively impatient. By contrast, outcomes are least efficient when the defendant is very

impatient and the plaintiff is relatively more patient.

5 Extensions

In this section, we investigate two extensions to our baseline model. First, we relax the

simplifying assumption that the plaintiff makes a take-it-or-leave-it during settlement nego-

tiations. Second, we investigate outcomes under an alternative learning technology in which

θ is fully revealed if the case goes to trial.

7By ‘likelihood’ we mean the range of parameter values for which the outcome is equilibrium consistent.
Since (δP , δD) is common knowledge, there is no uncertainty about whether cases are settled or go to trial
along the equilibrium path. However, taking δP as a publicly observed draw from a distribution (conditional
upon δD), the likelihood of the draw resulting in settlement decreases as δD increases.
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5.1 Settlement Bargaining

Consider a more general approach to settlement negotiation in which the settlement s is

determined by asymmetric Nash Bargaining. The disagreement payoff is the subgame perfect

equilibrium payoff when settlement fails, which will be the expected payoff from going to

trial when this is individually rational for the plaintiff. Let φ ∈ [0, 1] denote the plaintiff’s

bargaining strength. If φ = 1, then Nash Bargaining reduces to the baseline case where

the plaintiff makes a take-it-or-leave-it offer. When φ = 0, we have the opposite case of

a defendant making take-it-or-leave-it offers. When φ ∈ (0, 1) bargaining power is shared

between the parties.

Changing the bargaining protocol will not affect the parties’ incentives to proceed to trial if

settlement fails. Thus, as in the baseline model, we know that litigation is rational for the

plaintiff whenever q1 > 1− u1. Moreover, whenever the plaintiff cannot credibly go to trial,

it will not be able to extract settlements from the defendant. Thus, we focus on the case

when litigation is credible.

The incentive to settle is also unchanged under the modified bargaining protocol. The

plaintiff will accept any settlement offer s ≥ I(q1, l1, u1) − δPAP (q1, l1, u1). Analogously,

the defendant will accept a settlement if s ≤ I(q1, l1, u1)− δDAD(q1, l1, u1). The settlement

surplus is: δPAP (q1, l1, u1) − δDAD(q1, l1, u1), which is identical to baseline. Settlement

will arise along the equilibrium path whenever the settlement surplus is non-negative, i.e.

whenever the settlement condition (1) is satisfied. Thus, conditional on the firm’s output,

changing the bargaining protocol does not affect whether the litigants settle or proceed to

trial.
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However, it will affect the terms of settlement ŝ(q1, l1, u1), which is determined by:

ŝ = arg max
s

[s− I(q1, l1, u1) + δPAP (q1)]
φ[−s+ I(q1, l1, u1) + δDAD(q1)]

1−φ

= I(q1, l1, u1)− δPAP (q1) + φ[δPAP (q1)− δDAD(q1)]

The equilibrium settlement gives the plaintiff her disagreement payoff plus a fraction φ ∈ [0, 1]

of the settlement surplus. The defendant likewise receives his disagreement payoff plus a

fraction 1−φ of the settlement surplus. Evidently, by varying φ, we can induce any division

of the surplus between the litigants.

Taking the firm’s period 1 output as given, generalizing the bargaining protocol did not affect

the litigation dynamics. However, modifying the bargaining protocol will generically affect

the firm’s output choice when φ < 1. To see this, notice that the firm’s period 1 decision

now becomes:

max
q1


π(q1, l1, u1) + δDAD(q1) if δP

δD
≤ AD(q1)
AP (q1)

π(q1, l1, u1) + δDAD(q1) + (1− φ) [δPAP (q1)− δDAD(q1)] if δP
δD
> AD(q1)
AP (q1)

Since the firm now receives a positive fraction of the settlement surplus, it will no longer be

indifferent between settling or proceeding to trial. This affects its output choice in two ways.

First, in choosing q1 it must anticipate whether its choice will induce settlement or not along

the equilibrium path. By the settlement condition, the possibility of settlement depends on

the relative degrees of patience of both the plaintiff and defendant. Thus, and in contrast to

Proposition 1, the firm’s optimal output choice will generically depend on both δP and δD.

Second, relative to optimal dynamic output characterized in Proposition 1, the firm may now

have an incentive to distort its output choice in order to increase the settlement surplus, and

thus extract more concessions from the plaintiff during settlement negotiations. The direction
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of this distortion is somewhat complicated to predict, since it will depend on the interplay

between q1, δP and δD. We stress, however, that this incentive to distort arises only when

the firm anticipates settlement along the equilibrium path. When it expects to go to trial,

it faces the same incentives, and will thus make the same choice as it would in the baseline

model.

5.2 Learning

In some situations, the law is immediately and fully clarified when the case goes to trial.

For example, in a recent case (Yegiazaryan v. Smagin) the U.S. Supreme Court ruled that

foreign nationals or foreign parties can file a claim under the Racketeer Influenced and

Corrupt Organizations Act (RICO). Whereas, up to this point it had been unclear whether

this was legally permissible in a U.S. Court. Similarly, as regards to copyright law, in Fourth

Estate Public Benefit Corp. v. Wall-Street.com, LLC,[1] the U.S. Supreme Court decisively

resolved that “a copyright infringement suit must wait until the copyright is successfully

registered by the United States Copyright Office.”8. Within the framework of our model,

this implies that the exact value of θ is immediately learned as soon as a case goes to trial

(instead of the distribution of θ narrowing, as we have assumed to this point).

In this extension, we assume that information revealed at trial is perfectly informative of the

underlying externality (i.e. θ is perfectly revealed), and this results in the law being clarified.

The court continues to implement a negligence rule, so the firm pays a penalty θq1 whenever

q1 > 1− θ. Assuming that the firm produces in the ambiguous region, q1 ∈ (1− u1, 1− l1),

the expected penalty that the firm expects to be assessed at trial is E[θ | θ > 1 − q1] · q1 =

I(q1, l1, u1). Thus, the modified learning technology does not change the expected penalty

schedule, and the static optimal policy for the firm is as in Lemma 1.

8See https://supreme.justia.com/cases/federal/us/586/17-571/
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The modified learning technology does change the costs and benefits of learning to the

litigants. After the law is clarified, the firm will be able to produce the true socially efficient

quantity qeff = 1 − θ with impunity in the second period. By contrast, the plaintiff will

suffer the full expected harm from the firm’s (efficient) production θ(1− θ). Thus, the firm’s

expected second period profit (if it goes to trial, but prior to the evidence being revealed) is

1
2
− 1

2
E[θ2]. By contrast, the plaintiff’s expected second period harm is E[θ(1− θ)]. Unlike

the baseline model, the second period payoffs (following learning) are independent of the

firm’s first period quantity q1.

With these modified payoffs from learning, the incentives for litigation change. The plaintiff

will find it rational to go to trial provided that:

I(q1, l1, u1)− δPE[θ(1− θ)] > −δPJ(l1, u1)

I(q1, l1, u1) > δPBP (l1, u1)

where BP (l1, u1) = E[θ(1−θ)]−J(l1, u1) denotes the net expected second period loss that the

plaintiff suffers from having the case go to trial rather than not. Similarly, let BD(l1, u1) =

1
2
− 1

2
E[θ2] − Π(l1, u1) denote the net expected second period gain to the defendant from

having the law clarified.

The above inequality implies the following result:

Lemma 5. There exists a threshold quantity (the de facto safe output) λ̂(δP , l1, u1), charac-

terized by: I(λ̂(δP , l1, u1), l1, u1) = δPBP (l1, u1), such that the plaintiff will credibly take the

defendant to trial iff q1 > λ̂(δP , l1, u1). Moreover, λ̂ is increasing in δP , λ̂(0, l1, u1) = 1− u1

and λ̂(1, l1, u1) > q∗(l1, u1).

Lemma 5 identifies an important distinction between the gradual learning rule of section 3

and the complete learning technology described here. Whereas in the baseline, litigation was

always incentive compatible for the plaintiff, with complete learning, the plaintiff will only
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litigate if the firm’s first period choice (and thus the expected damages from going to trial)

are sufficiently large. λ̂(δP , l1, u1) defines the threshold quantity, above which the plaintiff

will litigate. Moreover, unless δP = 0, λ̂ > 1−u1, and so there are a range of cases — where

q1 ∈ (1 − u1, λ̂(δP )] — that would be litigated in the static game, but not in the dynamic

one. Over this range of cases, though the firm could potentially be held liable if taken to

court, the plaintiff will not initiate litigation. λ̂ becomes the de facto safe output for the

firm, and the firm would never produce a quantity below this.

Importantly, the de facto safe output is increasing in the plaintiff’s degree of patience.

Intuitively, as the future harms from having the law clarified become more salient to the

plaintiff, the upfront expected damages that she stands to recover must be commensurately

higher to incentivize her to go to trial. This requires the firm to choose a higher quantity

that is associated with larger expected damages.

The settlement decision with the modified learning technology mirrors that in the baseline

model. The plaintiff will accept a settlement s whenever s ≥ I(q1, l1, u1) − δPBP (l1, u1).

Similarly, the defendant will accept a settlement whenever −s ≥ −I(q1, l1, u1)+δDBD(l1, u1).

The settlement surplus is δPBP (l1, u1) − δDBD(l1, u1), and settlement will occur along the

equilibrium path whenever the settlement surplus is non-negative — i.e. if δP
δD
≥ BD(l1,u1)
BP (l1,u1)

.

This is straightforwardly analogous to the settlement condition (1) in the baseline analysis.

Notice that the settlement condition is unaffected by the firm’s period 1 quantity.

Next, consider the firm’s first period decision. Notice that the firm’s first period choice

affects its second period profit only insofar as it affects whether there is litigation or not.

Thus, if the optimal static choice is consistent with litigation by the plaintiff, then this choice

must be globally optimal for the firm. By contrast, if the optimal static output does not

attract litigation, then the firm will produce at least the de facto safe output, since it can so

with effective immunity, and potentially slightly more if it seeks to guarantee that litigation

arises along the equilibrium path.
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For simplicity, return to our baseline assumption under which the plaintiff has all the bar-

gaining power and can make a take-it-or-leave-it offer. Let δP be such that λ̂(δP ) ≥ q∗(l1, u1)

whenever δP ≥ δP . With the above insights, we are ready to characterize the equilibrium.

Suppose u1 − l1 > 1− u1 so that there is litigation in the baseline model.

Proposition 3. There exist thresholds δ̃D(δP ) = BP
BD
δP− max{0,π(q∗(l1,u1),l1,u1)−π(λ̂(δP ),l1,u1)}

BD(l1,u1)
and

δ̃P (δD) = BD
BP
δD such that, along the equilibrium path:

1. if δD < δ̃D(δP ), then the firm will produce the de facto safe output λ̂(δP ). There will

be no litigation despite the expected damages at trial being positive. We say there is

regulatory capture.

2. if δD ≥ δ̃D(δP ), the firm will produce a risk output. Moreover:

• If δP > δP , the firm will produce just slightly more than the de facto safe output

and take the case to trial, in effect bringing a test case.

• If δP ≤ δP , the firm will produce the optimal stage game output output q∗(l1, u1).

The parties will settle if δP > δ̃P (δD) and the case will go to trial otherwise.

Proposition 3 is summarized in Figure 2 below. A comparison of Figures 1 and 2 allow us

to identify the similarities and differences between the two learning technologies. In both

cases, when the defendant is relatively more patient that the plaintiff (i.e. δD < δ̃P (δD))

there will be litigation, cases will go to trial, and the law will evolve. There are, however,

two important differences. First, if the plaintiff is sufficiently patient, then the expected

harms from legal evolution may deter the plaintiff from bringing cases at all, even in cases

where the firm had produced a risky output that would have been litigated under the static

benchmark. We say there is regulatory capture. The perceived costs of litigation enable the

firm to behave with a degree of impunity.

Second, when both the plaintiff and defendant are patient, it may be that both the plaintiff

is litigation averse and that the defendant is strongly incentivized to cause the law to evolve.
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δD

δP

δP

1

1

δ̂P (δD)

δ̃D(δP )

Regulatory capture
q1 = ˜λ(δP )

Settle
q1 = q∗

Test Cases
q1 = λ̂(δP ) + ε

Genuine Litigation
q1 = q∗

Figure 2: Firm’s choice and litigation outcomes over the discount-parameter space, assuming
that u1− l1 > 1−u1 so that litigation arises along the equilibrium path in the static baseline.

In this case, the firm will bring ‘test cases’ by producing outputs just extreme enough as to

force litigation along the equilibrium path. This insight mirrors the result in the baseline

analysis where a sufficiently patient firm would produce increasingly risky outputs that made

settlement less and less likely. Given the stark nature of learning in this model, it is sufficient

for the firm to produce just beyond the threshold to ensure litigation along the equilibrium

path.

6 Conclusion

We present an analytical model of the common law to study how plaintiff’s and defendants

can affect its evolution. Plaintiffs can prevent the law from evolving through settlement, and

defendants can encourage the law to evolve in their favor, by generating test cases. These

incentives create both static and dynamic inefficiencies (as noted earlier) so that the common
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law’s evolution towards more efficient legal rules is not always guaranteed.

Plaintiffs wish to avoid learning, especially as they become more patient. Therefore, they

desire to settle instead of going to court where the law will be clarified. When learning

is complete (section 5.2), this aversion to learning can be so strong as to deter litigation

altogether — even in cases where litigation would arise in the static baseline. When the

plaintiff’s learning costs are sufficiently high, a wedge open between the de jure and de facto

safe outputs, in effect allowing the firm to produce higher outputs with impunity. We refer

to this as a situation of regulatory capture.

By contrast, defendants have incentive to go to trial to clarify the law. Indeed, sufficiently

patient defendants will choose quantities that invite litigation (or which make litigation more

likely). In effect, they generate test cases which force the plaintiff’s hand to go to trial in

order to have the law clarified.

Whether cases go to trial or not depends critically on whether the plaintiffs or the defendants

are more patient. Disputes that arise between relatively patient defendants and impatient

plaintiffs go to trial. By contrast, disputes between impatient defendants and patient plain-

tiffs are resolved out of court. These results hold (broadly) regardless of whether the learning

technology is complete or partial. These results are particularly apt in the context of a long-

run oriented regulator/plaintiff interacting with short-run oriented firms/defendants. Our

analysis formalizes intuitions offered previously by Galanter (1974) who notes that “repeat

players to ‘settle’ cases where they expect unfavorable rule outcomes”. Similarly, (Fiss, 1984)

notes that “a settlement will thereby deprive a court of the occasion, and perhaps even the

ability, to render an interpretation”.

However, importantly this prior literature does not identify exactly, which parties (plaintiffs

or defendants), or what benefits a repeat play may receive from settling cases. Our formal-

ization, finds that it is primarily plaintiffs who will wish to settle to avoid clarifying the law,

and that this effect will be especially strong when they are patient.
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As an illustration of how settlement prevents the law from evolving consider the enforcement

of Foreign Corrupt Practices Act (FCPA) violations. Around 92 % of FCPA cases violations

settled pretrial with the SEC or DOJ.9 And, indeed from a static efficiency perspective

settlement is usually pareto superior to trial. However, dynamically such pre-trial settlements

may not be efficient if they prevent the law from evolving. 10 Taken together, these results

show that strategic concerns of long lived plaintiffs can affect the stream of cases that arise

in court. This, in turn affects the type of cases that the court reviews, influencing the law’s

evolution and its efficacy.(Rubin (1977)).

Finally, this paper contributes to the broader literature on regulatory enforcement in two

ways. First, instead of studying how systems and institutions affect actors which is typical

in most of the regulatory literature, we study how actors affect the rules and the institutions

such as the courts, while also being affected by those very institutions, which is far less

studied. Second, much of the extant literature either focuses on either the role of courts

or those of the regulator. Instead, in our framework enforcement can involve both the

endogenous laws, the regulator, and the court. As our formal analysis shows, acknowledging

these effects alters the impact of regulations. We believe that future work should consider

these issues more deeply in other contexts.
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Appendices

A Proofs

Proof of Lemma 1. First, notice that the firm will never produce q < 1 − u, since the

marginal profit in this region is 1− q > 0. Similarly, the firm will never produce q ≥ 1− l,

since the marginal profit in this region is (1− u+l
2

)−q < 0. Hence, there are two possibilities:

either the firm produces the safe output q = 1 − u or it produces some optimally chosen q

in the ambiguous region q ∈ (1− u, 1− l).

The marginal profit in the ambiguous region is:

∂π

∂q
= 1− q − u2 − (1− q)2

2(u− l)
− q(1− q)

u− l

Solving this first order condition gives an optimal q of qA(l, u) = 1− 1−(u−l)+
√

(1−(u−l))2+3u2

3
.

We can show that qA < qE = 1− u+l
2
< 1− l, though there is no guarantee that qA > 1− u.

By the second order conditions, we know that ∂π
∂q

is decreasing in q over the relevant range.

Hence, to verify if qA > 1− u, it suffices to check the sign of ∂π
∂q

at q = 1− u. We have:

∂π

∂q
|q=1−u = u

[
1− 1− u

u− l

]

Hence ∂π
∂q
> 0 and so q∗ = qA > 1− u if 1− u < u− l. If the latter condition does not hold,

then π is decreasing over the entire ambiguous region, and so the safe output is optimal;

q∗ = 1− u.

Lemma A. Suppose u1 − l1 < 2(1− u1). Then:
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• If q1 ∈ [max{1−l1
2
, 1−u1},min{2(1−u1), 1−l1}] and there is learning, the second period

beliefs (l2, u2) will imply a second period quantity at the corner: q∗(l2, u2) = 1− u2.

• If q1 < max{1−l1
2
, 1− u1} and there is learning, then the second period quantity will be

at the corner if q1 is found to be unreasonable, but will be interior if q1 is found to be

reasonable. I.e. q∗(1− q1, u1) = 1− u1 and q∗(l1, 1− q1) = qA(l1, 1− q1) > q1.

Additionally, the following are true: (i) first period stage game efficient quantity qE = 1 −
u1+l1

2
satisfies qE ∈ [max{1−l1

2
, 1− u1},min{2(1− u1), 1− l1}]; (ii) if u1 − l1 < 1− u1, then

q∗(l1, u1) = qA(l1, u1) <
1−l1
2

; and (iii) max{1−l1
2
, 1−u1} = 1−u1 and min{2(1−u1), 1−l1} =

1− l1 iff u1 − l1 < 1− u1.

Proof of Lemma A. Suppose q1 ∈ [1 − u, 1 − l] is held to be acceptable. Then the new

beliefs will be (l2, u2) = (l1, 1 − q1). Then by Lemma 1, the second period output q∗(l2, u2)

will be at the corner (i.e. q∗ = 1 − u2 = q1) if 1 − q1 − l1 ≤ q1, which implies that

q1 ≥ 1−l1
2

. Suppose, instead that q1 is held to be unacceptable. Then the new beliefs will be

(l2, u2) = (1− q1, u1), and the second period output will be at the corner (i.e. q∗ = 1− u1)

if u1 − (1− q1) ≤ 1− u1, which implies that q1 ≤ 2(1− u1).

Next, notice that if u1 − l1 < 3(1 − u1), then 1−l1
2

< 2(1 − u1). If so, whenever the firm

produces q1 ∈ [max{1−l1
2
, 1−u1},min{2(1−u1), 1− l1}], the second period output will be at

a corner. Additionally, if u1 − l1 < 2(1− u1), as we assume, then it can be verified that this

interval contains the stage game efficient output qE = 1− u1+l1
2

. Additionally, Parameswaran

(2018) shows that if u1 − l1 > 1− u1 so that q∗(l1, u1) = qA(l1, u1), then q∗ < 1−l1
2

.

Proof of Lemma 2. First, we show that AP ≥ 0 and AD ≥ 0. We omit time-subscripts

wherever we can do so without confusion. First, consider AD. Recall that Π(l, u) =

π(q∗(l, u), l, u) and that π(q, l, u) = q − 1
2
q2 − I(q, l, u).
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Then:

AD =
u− (1− q1)

u− l
·Π(1− q1, u) +

(1− q1)− l
u− l

·Π(l, 1− q1)−Π(l, u)

≥ u− (1− q1)
u− l

· π(q∗, 1− q1, u) +
(1− q1)− l

u− l
· π(q∗, l, 1− q1)− π(q∗, l, u)

= I(q∗, l, u)− u− (1− q1)
u− l

· I(q∗, 1− q1, u) +
(1− q1)− l

u− l
· I(q∗, l, 1− q1)

=

[
u2 − (1− q∗)2

2(u− l)
− u− (1− q1)

u− l
· u

2 − (1−min{q1, q∗})2

2[u− (1− q1)]
− (1− q1)− l

u− l
· (1− q1)2 − (1−max{q1, q∗})2

2((1− q1)− l)

]
q∗

=

[
u2 − (1− q∗)2

2(u− l)
− u2 − (1−min{q1, q∗})2

2(u− l)
− (1− q1)2 − (1−max{q1, q∗})2

2(u− l)

]
q∗

= 0

where the second line makes use of the fact that q∗(l, u) is generically not optimal for beliefs

(l, 1 − q1) or (1 − q1, u), and the fourth lines make use of the facts that: (i) I(q∗, 1 −

q, u) = u+(1−q)
2

q∗ if q∗ > q1 and I(q∗, 1 − q, u) = u−(1−q∗)2
2[u−(1−q1)]q

∗ if q∗ < q1; and similarly (ii)

I(q∗, l, 1− q1) = u−(1−q∗)
2[(1−q1)−l]q

∗ if q∗ > q1 and I(q∗, 1− q, u) = 0 if q∗ < q1.

Next, we must show that AP ≥ 0. First suppose that u − l ≤ 1 − u. If so, we can easily

verify that AP (q1) = (u−(1−q1))(1−q−l)(1−q+l)
2(u−l) . This is a cubic in q with roots at 1 − u, 1 − l

and 1 + l, and so it is non-negative over the interval [1− u, 1− l].

Suppose instead that u− l > 1−u, so that 1−u < 1−l
2
< 2(1−u) < 1− l. Over the interval

[1− u, 1−l
2

] we have:

AP (q1) =
u2 − (1− q1)2

2(u− l)
(1−u)+

(1− q1)− l
u− l

[
(1− q1) + l

2
q∗ − I(q∗, l, 1− q1)

]
−J(q∗(l, u), l, u)
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where q∗ = qA(l, 1− q1). Notice that AP (1− u) = 0. Additionally:

A′P (q1) =
1− q1
u− l

[1− u− q∗] +
I(q∗, l, 1− q1)

u− l
+

1− q1 − l
u− l

Iu(q
∗, l, 1− q1)+

+

[
(1− q1)2 − l2

2(u− l)
− 1− q1 − l

u− l
(1− q∗)

]
∂q∗

∂q

=
(1− q1)(1− u)

u− l
− 1− q1 − l

u− l
[qE(l, 1− q1)− q∗]

∂q∗

∂q

where we make use of the fact that Iu(q, l, u) = uq
u−l −

I(q,l,u)
u−l . By the implicit function

theorem, we can show that ∂q∗(l,1−q1)
∂q1

= q∗−q1
(1−q1−l)+2−q∗ > 0. Additionally, we know that

qE − q∗ < (1− u+l
2

)− (1− u) = u−l
2
< 1

2
. Hence we have:

A′P (q1) =
(1− q1)
u− l

[
(1− u)− 1− q1 − l

1− q1
[qE(l, 1− q1)− q∗]

q∗ − q1
(1− q1 − l) + 2− q∗

]
>

(1− q1)
u− l

[(1− u)− (qE(l, 1− q1)− q∗)(q∗ − q1)]

>
(1− q1)
u− l

[
(1− u)− 1

2
(u− l)

]
> 0

where the third line uses the fact that q∗ − q1 < u− l (since q∗ < 1− l and q1 > 1− u), and

the fourth line uses the fact that u− l < 2(1−u). Hence AP (q1) > 0 for all q1 ∈ (1−u, 1−l
2

).

By an analogous argument, we can show that A′P (q1) < 0 whenever q1 ∈ (2(1 − u), 1 − l)

and that AP (1− l) = 0. Hence AP (q1) > 0 for all q1 ∈ (2(1− u), 1− l).

Finally, suppose q1 ∈ [1−l
2
, 2(1− u)]. Similar to the case of u− l < 1− u, we can verify that

AP (q1) = (u−(1−q1))(1−q−l)(1−q+l)
2(u−l) −Π(l, u) + u+l

2
(1− u). This again is a cubic which is strictly

quasi-concave over the interval [1 − u, 1 − l]. Thus AP (q1) ≥ 0 for all q1 ∈ [1−l
2
, 2(1 − u)] if

min{AP (1−l
2

),AP (2(1− u))} ≥ 0. These properties were verified this above.

Proof of Lemma 3. The victim prefers to go to trial provided that: I(q1, l, u) > δPAP (q1, l, u),
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where A(q1, l, u) = u−(1−q1)
u−l J(1 − q1, u) + (1−q1)−l

u−l J(l, 1 − q1) − J(l, u). Since δP ∈ [0, 1], it

suffices to show that A(q1, l, u) < I(q1, l, u) for all q1 > 1− u.

Recall, J(l, u) = (1−q∗(l,u))2−l2
2(u−l) q∗(l, u) where q∗(l, u) ≥ 1 − u is the firm’s static optimal

output. Since q∗(l, u) ∈ [1 − u, 1 − l), we must have q∗(1 − q1, u) < q1 ≤ q∗(1 − q1, l) and

q∗(1 − q1, u) ≤ q∗(l, u) ≤ q∗(l, 1 − q1). Since all quantities are positive, these implies that

(1− q∗(l, u))2 ≥ (1− q∗(l, 1− q1))2 and u2 ≥ (1− q∗(1− q1, u))2.

We have:

AP (q1, l, u) =
u− (1− q1)

u− l
· (1− q∗(1− q1, u))2 − (1− q1)2

2(u− (1− q1))
· q∗(1− q1, u) +

(1− q1)− l
u− l

· (1− q∗(l, 1− q1))2 − l2

2((1− q1)− l)
· q∗(l, 1− q1)

− (1− q∗(l, u))2 − l2

2(u− l)
· q∗(l, u)

=
(1− q∗(1− q1, u))2 − (1− q1)2 + (1− q∗(l, 1− q1))2 − (1− q∗(l, u))2

2(u− l)

<
u2 − (1− q1)2

2(u− l)

= I(q1, l, u)

Lemma B. AD(q1) is concave in q1 for q1 ∈ [1− u, 1− l].

Proof of Lemma B. The proof is in two parts. First, we show that AD is concave in

the regions q1 ∈ [max{1−l
2
, 1 − u},min{2(1 − u), 1 − l}], q1 ∈ [1 − u,max{1−l

2
, 1 − u}) and

q1 ∈ (min{2(1− u), 1− l}, 1− l]. (Recall that if u1 − l1 < 1− u1, then the second and third

regions are empty.

Take the first region. Note that pre-penalty profits are q − 1
2
q2 = 1

2
− 1

2
(1 − q)2. Then by

construction:

AD(q1, l1, u1) =
u1 − (1− q1)

u1 − l1

[
1

2
− 1

2
u21

]
+

(1− q1)− l1
u1 − l1

[
1

2
− 1

2
(1− q1)2

]
− Π(l1, u1)
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Hence:

A′D(q1) = −u
2
1 − (1− q1)2

2(u1 − l1)
+

(1− q1)− l1
u1 − l1

(1− q1) =
3(1− q1)2 − 2l1(1− q1)− u21

2(u1 − l1)

and so:

A′′D(q1) =
l1 − 3(1− q1)

u1 − l1

Notice that for any q1 ∈ [max{1−l
2
, 1−u},min{2(1−u), 1−l}], 1−q1 ≥ l1, and so A′′D(q1) < 0.

Hence AD is concave in this region.

Next, take the second region [1− u,max{1− u, 1−l
2
}), and suppose that u1 − l1 > 1− u1 so

that this region is non-empty. We have:

AD(q1, l1, u1) =
u1 − (1− q1)

u1 − l1

[
1

2
− 1

2
u21

]
+

(1− q1)− l1
u1 − l1

[
1

2
− 1

2
(1− q∗)2 − I(q∗, l1, 1− q1)

]
−Π(l1, u1)

where q∗ = qA(l1, 1−q1). Now, by the envelope theorem, and using the fact that Iu(q
∗(l, u), l, u) =

uq∗

u−l −
I(q∗,l,u)
u−l , we have:

A′D(q1) =
1
2
(1− q∗)2 − 1

2
u21 + I(q∗, l1, 1− q1)
u1 − l1

− 1− q1 − l1
u1 − l1

·
[
I(q∗, l1, 1− q1)

1− q1 − l1
− (1− q1)q∗

1− q1 − l1

]
=

(1− q1)q∗ − 1
2
[u21 − (1− q∗)2]

u1 − l1

Then, noting (as we did in the proof of Lemma 2) that ∂q∗(l1,1−q1)
∂q1

> 0, we have:

A′′D(q1) = − q∗

u1 − l1
− q∗ − q1
u1 − l1

· ∂q
∗

∂q1
< 0

which makes use of the fact that q∗(l1, 1− q1) > q1. Hence AD(q1) is concave in this region.

An analogous argument shows that the third region is concave as well.

Second, we show that AD is smooth at the boundaries between the regions when u1 − l1 >
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1 − u1. This guarantees that it is globally concave over q1 ∈ [1 − u, 1 − l]. To see this,

consider the left and right derivatives of AD at q1 = 1−l1
2

. Recall that, by construction, when

q1 = 1−l1
2

, then qA(l1, 1− q1) = q1 = 1−l1
2

We have:

lim
q1↑ 1−l1

2

A′D(q1) =

[(
1− 1−l1

2

)2 − u21]+ 2
(
1− 1−l1

2

)
1−l1
2

2(u1 − l1)

=

[
(1+l1

2
)2 − u21

]
+ 21−l1

2

(
1+l1
2

)
2(u1 − l1)

By contrast, we have:

lim
q1↓ 1−l1

2

A′D(q1) =
3
(
1+l1
2

)2 − 2l1
(
1+l1
2

)
− u21

2(u1 − l1)

=

[(
1+l1
2

)2 − u21]+ 21−l1
2

(
1+l1
2

)
2(u1 − l1)

= lim
q1↑ 1−l1

2

A′D(q1)

A similar approach verifies that there is a convex kink at q1 = 2(1 − u), and that AD is

decreasing at this boundary.

Proof of Lemma 4. Suppose that q1 ∈ [max{1−l
2
, 1−u},min{2(1−u), 1− l}]. We showed

in the proof of Lemma B that:

A′D(q1) = −u
2
1 − (1− q1)2

2(u1 − l1)
+

(1− q1)− l1
u1 − l1

(1− q1) =
3(1− q1)2 − 2l1(1− q1)− u21

2(u1 − l1)

Take the case of q1 = qE. By Lemma A we know that qE ∈ [max{1−l1
2
, 1 − u1},min{2(1 −

u1), 1− l1}]. Then, by direct substitution we have A′D(qE) = −5u1+3l1
8

< 0.

Next, take the case of q1 = q∗(l1, u1). If u1− l1 < 1− u1, then by Lemmas 1 and A we know
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that q∗(l1, u1) = 1− u1 ∈ [max{1−l1
2
, 1− u1},min{2(1− u1), 1− l1}]. Hence, again by direct

substitution, A′D(1− u1) = u1 > 0.

If instead u1 − l1 > 1− u1, then q∗(l1, u1) = qA(l1, u1) <
1−l
2

. For q1 <
1−l
2

, recall that:

A′D(q1) =
1− u21

2(u1 − l1)
− Π(l1, 1− q1)

u1 − l1
− 1− q1 − l1

u1 − l1
Πu(l1, 1− q1)

=
1− u21

2(u1 − l1)
−
[

1− (1− qA(l1, 1− q1))2

2(u1 − l1)
− (1− q1)2 − (1− qA(l1, 1− q1))2

2(1− q1 − l1)(u1 − l1)
qA(l1, 1− q1)

]
− qA(l1, u1)

u1 − l1

[
(1− q1)2 − (1− qA(l1, 1− q1))2

2(1− q1 − l1)
− (1− q1)

]
= −u

2
1 − (1− qA(l1, 1− q1))2

2(u1 − l1)
+

(1− q1)qA(l1, 1− q1)
u1 − l1

Now, using the result from the proof of Lemma B:

A′D
(

1− l1
2

)
=

21−l1
2

(
1+l1
2

)
+ (1+l1

2
)2 − u21

2(u1 − l1)

=
1− u21 −

(
1−l1
2

)2
2(u1 − l1)

>
1−

(
2+l1
3

)2 − (1−l1
2

)2
2(u1 − l1)

=
1− 25−2l1+13l21

36

2(u1 − l1)

> 0

where the first inequality uses the fact that u1 − l1 < 2(1− u1) (and hence u1 <
2+l1
3

), and

the second inequality using the fact that 25 − 2l1 + 13l21 < 25 + 11l1 < 36 for l1 ∈ (0, 1)

(since l21 < l1). Hence A′D
(
1−l1
2

)
> 0. Finally, since A′′D(q1) < 0, then A′D(q1) > 0 for all

q1 ∈ (1− u, 1−l
2

) which includes the case of q1 = qA(l1, u1).

Proof of Proposition 1. The firm chooses q1 to maximize π(q1, l1, u1) + δDAD(q1, l1, u1),

taking (l1, u1) as given. Since both π(q1) and AD(q1) are concave, the optimal choice is
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characterized by the first order condition. Denote φ(q1) = π(q1) + δDAD(q1). We have

φ′(q̂1) ≤ 0 (with equality unless there is a corner solution at q = 1− u).

First suppose u1 − l1 < 1 − u1. We showed previously that A′D(1 − u1) = u1 > 0 and that

π′(1− u) = u
[
1− 1−u

u−l

]
< 0. Hence φ′(1− u) ≤ 0 provided that δD ≤ 1−u

u−l − 1 = δD > 0, and

so q̂1(δD) = 1− u if δD ≤ δD. If δD > δD, then q̂1 > 1− u satisfies the first order condition

φ′(q̂1) = 0.

Now, suppose u1 − l1 > 1 − u1. Since π′(qA) = 0 and A′D(qA) > 0, then φ′(qA) > 0 (unless

δD = 0). Similarly, since π′ < 0 and A′D < 0 for q ≥ qE, then φ′(qE) < 0. Hence, by the

intermediate value theorem, there exists q̂1 ∈ (qA, qE) s.t. φ′(q̂1) = 0. [Note briefly that q̂1 ≥
1−l1
2

provided that π′
(
1−l1
2

)
+ δDA′

(
1−l1
2

)
≥ 0, which will be true if δD ≥ −

π′( 1−l1
2 )

A′D( 1−l1
2 )

= δ̃D.]

In both cases, since π′′ < 0 and A′′D < 0, the implicit function theorem implies that:

∂q̂1
∂δD

= −A
′
D(q̂1)

φ′′(q̂1)
> 0

Proof of Propositions 2.A and 2.B. By Proposition 1, we know that q̂1(δD) = 1 − u1

if both u1 − l1 < 1 − u1 and δD ≤ δD = 1−u
u−l − 1, and that otherwise q̂1(δD) ∈ (1 − u1, qE).

By Lemma 3, we know that litigation is individually rational for the plaintiff provided that

q1 > 1 − u1 (i.e. provided δD > δD). Hence, there will be litigation along the equilibrium

path unless u1 − l1 ≤ 1− u1 and δD ≤ δD.

Next, suppose that litigation is individually rational for the plaintiff. By the settlement

condition, the parties will settle if δP ≥ δ̃P (δD) = AD(q̂1(δD))
AP (q̂1(δD))

δD.

Now, take the particular case in Lemma A of u1 − l1 < 1 − u1 and δD > δD. In this case,

we know that q∗(l1, 1− q1) = q1 and q∗(1− q1, u1) = 1− u1. Using these facts, we can verify
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that:

AD(q1) =
(u1 + 1− q1)(u1 − (1− q1)(1− q1 − l1)

2(u1 − l1)

AP (q1) =
(l1 + 1− q1)(u1 − (1− q1)(1− q1 − l1)

2(u1 − l1)

Hence, the settlement condition becomes:

δP ≥
u1 + 1− q̂1(δD)

l1 + 1− q̂1(δD)
δD = δ̃P (δD)

Using the facts that u1+1−q1
l1+1−q1 is strictly increasing in q1 and q̂1 is strictly increasing in δD (for

δD > δD), it is straightforward to verify that δ̃P is strictly increasing in δD.

Proof of Lemma 5. Recall that the plaintiff will litigate if I(q1, l1, u1) > δPBP (l1, u1).

The left-hand side is continuous and strictly increasing in q1, whilst the right-hand side is

constant in q1. Hence, there exists some λ̂ such that the IR condition is satisfied whenever

q1 > λ̂(δP , l1, u1). Since I(1− u, l, u) = 0, λ̂(0, l, u) = 1− u.

Now, the de facto safe output is implicitly defined by I(λ̂(δP , l1, u1), l1, u1) = δPBP (l1, u1). If

BP (l1, u1) > 0, then the right-hand side is strictly increasing in δP and so it must be that λ̂ is

strictly increasing in δP as well. Moreover, if I(q∗(l, u), l, u) < BP (l, u), then it must be that

λ̂(1, l1, u1) > q∗(l1, u1). Thus it suffices to show that BP (l1, u1) > I(q∗(l1, u1), l1, u1) ≥ 0,

which by the definition of BP is equivalent to showing that E[θ(1− θ)]− E[θ]q∗(l1, u1) > 0.

There are two cases to consider. First, suppose u1 − l1 < 1− u1, so that q∗(l1, u1) = 1− u1.
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Then:

E[θ(1− θ)] =

∫ u1

l1

θ(1− θ) · 1

u− l
dθ

>

∫ u1

l1

θ(1− u1) ·
1

u1 − l1
dθ

= q∗(l1, u1)E[θ]

as required.

Suppose instead u1 − l1 > 1 − u1 so that q∗(l1, u1) = qA(l1, u1). Denote x(l1, u1) = E[θ(1−

θ)] − qA(l1, u1)E[θ]. First, consider the special case of l1 = 0. Then x(0, u1) = u1
6

(1 −

3u1 +
√

(1− u1)2 + 3u21). With a little algebra, we can verify that x(0, u1) > 0 whenever

u1 − l1 < 2(1− u1). Next, for any u1, note that:

∂x

∂l1
=

[1 + 3l1 + 2l21 − u1 − 2l1u1 + 3u21]

6
√

(1 + l1 − u1)2 + 3u21
+ 1− l1 + u1

3
.

Clearly, the last two terms of the previous expression are positive (together). Now consider

the first term. Again, the denominator is positive. The numerator, 1 + 3l1 + 2l21 − u1 −

2l1u1 + 3u2, is increasing in l1 (its derivative with respect to l1 is 3 + 6l1 − 2u1 > 0) and it

is strictly positive at l1 = 0. Thus, for any value of l, ∂x
∂l1

> 0. This completes the proof.

Proof of Proposition 3. Fix some pair (δP , δD). Recall that litigation is only rational

for the plaintiff if q1 > λ̂(δP ). Furthermore, when litigation arises, the parties will settle if

δP ≤ δ̃P (δD), and will go to trial otherwise.

Now, since the plaintiff makes a take-it-or-leave-it settlement offer, we know that the defen-

dant will be held to their non-settlment utility in equilibrium (whether settlement occurs or
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not). Hence, the defendant’s problem is to choose q1 to maximize:


q1 − 1

2
q21 + δDΠ(l1, u1) if q1 ≤ λ̂(δP )

q1 − 1
2
q21 − I(q1, l1, u1) + δD[Π(l1, u1) + BD(l1, u1)] if q1 > λ̂(δP )

Clearly the firm will never choose q1 < λ̂(δP ) ≤ 1 − l1. Notice that the choice of q1 does

not affect expected second period profits at the margin — it merely determines whether

litigation will arise or not.

The results will depend on whether the safe output is larger than the stage-optimal risky

output or not. Since λ̂(δP ) is increasing in δP and λ̂(0) = 1 − u, then there exists δP s.t.

λ̂(δP ) > q∗(l1, u1) provided that δP > δP . (If q∗(l1, u1) = 1− u1, then δP = 0.)

There are two cases to consider. First, suppose δP > δP — i.e. λ̂(δP ) ≥ q∗(l1, u1). Then, the

firm has no first period incentive to produce q1 > λ̂(δP ), and in fact, first period utility is

decreasing in q1 beyond λ̂(δP ). Additionally, though it may have a second period incentive,

any q1 > λ̂(δP ) would be just as good. Thus, the firm will either produce the de facto

safe output λ̂(δP ) (which precludes litigation) or slightly more λ̂(δP ) + ε (which induces

litigation). The former is preferred if: δD ≤ I(λ̂(δP ),l1,u1)
BD(l1,u1)

= BP (l1,u1)
BD(l1,u1)

δP , where we use the fact

that I(λ̂(δP ), l1, u1) = δPBP (l1, u1). But this is precisely the settlement condition.

Next, suppose δP ≤ δP — i.e. λ̂(δP ) < q∗(l1, u1). Then the firm’s must choose between the

safe output λ̂(δP ) and the stage game optimal risky output q∗(l1, u1) = qA(l1, u1). The firm

will make the safe choice provided that:

λ̂(δP )− 1

2
λ̂2(δP ) ≥ Π(l1, u1) + δDBD(l1, u1)

λ̂(δP )− 1

2
λ̂2(δP )− I(λ̂(δP ), l1, u1) ≥ Π(l1, u1) + δDBD(l1, u1)− δPBP (l1, u1)

δD ≤
BP (l1, u1)

BD(l1, u1)
δP −

π(q∗(l1, u1), l1, u1)− π(λ̂(δP ), l1, u1)

BD(l1, u1)
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Notice that π(q∗(l1, u1)) > π(λ̂(δP )) by construction, and that π(q∗(l1, u1))− π(λ̂(δP )) → 0

as δP → δP Define:

δ̃D(δP ) =
BP (l1, u1)

BD(l1, u1)
δP −

max{0, π(q∗(l1, u1), l1, u1)− π(λ̂(δP ), l1, u1)}
BD(l1, u1)

Thus, the firm will choose the safe output λ̂(δP ) if δD ≤ δ̃D(δP ), and a risky output if

δD > δ̃D(δP ). The risky output will be qA(l1, u1) if δP < δP , and it will be λ̂(δP ) + ε if

δP ≥ δP
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