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Abstract

We present a model that locates the source of vagueness as the speaker’s inability
to perfectly perceive the world. We show that the agents will communicate clearly
about the world as the sender perceives it. However, the implied meaning about the
actual world will be vague. Vagueness is characterized by probability distributions that
describe the degree to which a statement is likely to be true. Hence, we provide micro-
foundations for truth-degree functions as an equilibrium consequence of the sender’s
perception technology and his optimal, non-vague communication in the perceived world
— connecting the epistemic and truth-degree approaches to vagueness.
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1 Introduction

Vagueness is a common feature of natural languages. A message is vague when the receiver
of a message cannot be certain of which ‘states’ or outcomes the sender of the message
had intended to invoke. For example, though we routinely describe people or things as
‘tall’, ‘heavy’, ‘fast’, and so on, we would, in most cases, struggle to identify the boundary
between tall and short, or between fast and slow. Indeed, vagueness is often associated with
a ‘blurring of the boundaries’ between the meanings of words.1

Many theories seek to explain the nature and source of vagueness. In this paper, we in-
vestigate epistemicism — the idea that vagueness arises because agents perceive the world
imperfectly, and so cannot describe it in a way that is crisp — as a source of vagueness. To
do so, we present a formal model of communication that is in the spirit of (but not identical
to) the framework in Williamson (1994). We begin with the observation that communica-
tion in the presence of imperfect perception is different from communication with perfect
perception; imperfect perception limits the scope of communication to statements about the
perceived world rather than about the actual world. We show that imperfect perception does
not necessitate that communication about the perceived world be vague. We additionally
show that, if this perceived-world communication is extended to the actual (objective) world
— i.e. if we try to give meaning to what is based on claims about what appears to be —
then meaning will be vague in the actual world. However, this vagueness is metaphysical
(it inheres in the objects being described) rather than epistemic, and is closest in spirit to
the truth-degree (continuum-valued logic) approach. We thus provide micro-foundations for
truth-degree functions as the consequence of the optimal, non-vague communication in the
perceived world, and the sender’s perception technology, thereby connecting the epistemic
and truth-degree approaches to vagueness.

Communication, it has long been recognized, is facilitated when agents are coordinated on
a common language (see Lewis, 1969). The sender’s choice of message depends on his belief
about how that message will be interpreted by the receiver, and the receiver’s interpretation
will depend on how she expects the sender to use the available messages. The meaning of
words and messages, then, are not fully exogenous, but arise as a consequence of a commu-
nication game between sender and receiver. To capture this dynamic, we develop a formal
model of communication in the spirit of Crawford and Sobel (1982). The sender observes an

1A distinct but related concept is ‘ambiguity’, which arises when a given word has applications in distinct
contexts. For example, to say that ‘John went to the bank’ is ambiguous, in that it is unclear whether John
has gone to a financial institution or to the edge of a river. Accounts of ambiguity are not intrinsically tied
up with notions of ‘degree’ in the way that our model of vagueness will be.
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informative, but imperfect, signal about a state of the world. The sender transmits a message
to the uninformed receiver, who then takes an action that affects both parties. To highlight
the effect of epistemic uncertainty, we abstract from other frictions (such as preference dis-
agreement), that may induce vagueness through other channels. Our model characterizes the
optimal use of messages by the sender, given the anticipated response by the receiver. The
meaning of those messages is pinned down in equilibrium, given the sender’s use. Optimal
communication will be imprecise if multiple states (when communicating about the actual
world) or signals (when communicating about the perceived world) are associated with the
same message. By contrast, if communication is vague, then (additionally) multiple messages
will be associated with the same signal or state.

As we previously noted, the nature of communication differs between perfect and imper-
fect perception environments. Whereas a perfectly perceiving sender can make objective
statements of the form ‘John is tall’, an imperfectly perceiving sender can only claim that
‘John appears tall (to me)’. Imperfect perception relegates communication to the world of
subjective claims, even if the sender renders a statement in a seemingly objective way. We
show that imperfect perception alone is insufficient to generate vagueness in the realm of
statements about apparent truths. Even if the sender is uncertain that what he perceives
is true, this should not prevent him from clearly indicating what he has perceived. To do
so, we construct an equilibrium in which the sender optimally partitions the set of perceived
states so that each apparent state is associated with precisely one message. For example,
there will be a threshold that partitions the set of apparent heights into those that appear
tall and those that appear short.

It is common, however, to interpret subjective statements as objective ones — e.g. we often
take the statement ‘John is tall’ to actually be an objective claim about John’s height. And
we are inclined to do so, even knowing that the sender does not have privileged access to
objective truths. Reflecting this tendency, we extend the perceived world language to the
actual world, and analyze its meaning in this new space. To be clear, the sender’s use
cannot be different in the extension, since the sender does not observe the true state when
choosing his message. However, if the true state is revealed ex post, we may observe the
mapping between states and messages, after the fact.2 Given that the sender’s perception is
imperfect, there will be borderline cases where the sender classifies persons of the same height
as tall in some instances, and short in others. In this ex post sense, messages become vague,

2This is consistent with Williamson’s (1994) account in his motivating example, where a sender claims
that there are 30,000 people at a sporting arena, when in reality the actual number is close to, but not exactly
30,000. At the time of his utterance, Williamson’s sender does not know the true number of attendees,
although we may be able to determine this ex post, by counting ticket sales (for example).
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since multiple predicates are associated with the same state of the world. Communication
that was well defined in the subjective world becomes vague when extended to the objective
world. We show that the sender’s ideal message use (in the subjective space) combined with
the technology that governs perception, induces a probability distribution that describes
the likelihood that each predicate is ascribed to a given object. As long as perception is
imperfect, this probability distribution will be non-degenerate over a range of ‘borderline’
outcomes. The characteristic feature of vagueness arises when the probability distribution is
degenerate over many states (for which the appropriate predicate to use is clear) but becomes
non-degenerate over a subset of ‘boundary’ states.

In its extension to the objective world, our model has strong similarities to the continuum-
valued logic approach to vagueness. This approach rejects the principle of bivalence and
instead conceives of statements as having ‘truth-degrees’ that range from zero (definitely
false) to one (definitely true). Since use determines meaning, and our model determines
the likelihood of using a particular message to describe a given state, we, in effect, provide
micro-foundations for the assignment of truth-degrees. Our model, therefore, unites two
distinct approaches to explaining vagueness that are predominant in the literature. We use
epistemic theory to provide the causal mechanism that generates the descriptive features of
the truth-degrees approach. Truth-degrees are determined in equilibrium, given the prop-
erties of the optimal communication strategies in the subjective realm and the properties
of the technology that governs perception. Similar to canonical truth-degree models, our
induced truth-degree functions respect comparisons over ordered objects — if John is taller
than Mary, then the truth-degree assigned to John being tall will be at least as large as the
truth-degree for Mary being tall. However, in contrast to many truth-degree theories, our
truth-degree functions are not truth-functional. Instead, our truth-degree functions satisfy
the axioms of probability (which still permits the assignment of truth-degrees to compound
statements if the joint-probability distribution is known) as well as standard rules of logic
such as the Law of the Excluded Middle.

2 Literature

2.1 Philosophical Accounts

There are many accounts of the sources and characteristics of vagueness. These can be
broadly categorized into four approaches: metaphysical, semantic, epistemic, and psycholog-
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ical (see Smith, 2008; Schiffer, 2000). Metaphysical accounts attribute vagueness directly to
properties of the object being described. For example, whilst it is clear that a sky-scraper
is tall, it is unclear whether a ten-story building ought to be described as tall or not. This
clarity, or lack thereof, arises directly from the building’s height, and is inherent to the object
being described. As a matter of logic, metaphysical accounts are typically forced to reject
the principle of bivalence — it may be neither (clearly) true nor (clearly) false that the
building is tall — in favor of multi-valued logics (see Halldén, 1949). The continuum-valued
logic approach (see Zadeh, 1975; Smith, 2008, amongst others), is a particular instantiation
of this approach, which replaces the binary notions of truth or falsity with ‘truth-degrees’
which can take any value from 0 (clearly false) to 1 (clearly true). These truth-degrees
are typically taken as primitives of the language. A useful property for truth-degrees is
truth-functionality — the property that the truth degree of a compound statement can be
determined purely from the truth degrees of the constituent simple statements. Indeed, most
truth-degree proponents endow truth-degrees with this property (Edgington, 1997, being a
notable exception). However, as Fine (1975) demonstrates, truth-functionality causes truth-
degrees to be inconsistent with the laws of probability and standard results of logic, such as
the Law of the Excluded Middle.

Our model departs from the canonical truth-degree approach in two ways. First, truth-
degrees are not primitives in our model. Rather, they are determined in equilibrium by more
primitive features, such as the sender’s perceptive faculties. Second, we construct truth-
degrees as probability measures, making them consistent with standard results in logic. We
do so at the cost of truth-functionality, although with a complete specification of the joint
probability distribution of events, we can still assign truth degrees to compound statements.

Semantic accounts attribute vagueness to indeterminacy in the way messages are used by
different speakers. Plurivaluationism (see Smith, 2008), captures this idea that different
speakers may describe the same object differently. It is closely related to, although distinct
(as Smith, 2008, takes pains to argue) from, Supervaluationism (see Dummett, 1975; Fine,
1975; Keefe, 2000), which posits that messages are vague when its extension to indeterminate
cases admits multiple interpretations. Under this approach, vagueness arises because of an
inability by the community to coordinate on a common use of language.

The epistemic account (see Williamson, 2002; Sorensen, 2001) locates vagueness in the lim-
itations of human perception. Proponents of this approach insist that vagueness is neither
metaphysical (it does not inhere in objects) nor semantic (it is not a consequence of who
is communicating). Language itself is well-defined and characterized by sharp thresholds,
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and a perfectly informed speaker would use messages in ways that are consistent with their
meanings. Vagueness arises because imperfect perception prevents agents from precisely
comparing the true state of affairs against these thresholds. A challenge for the epistemic
theorist is that, by this account, these thresholds are seemingly determined independently
of the speaker’s usage, thereby severing the link between use and meaning.3

Our model lays bare this challenge. The speaker’s use of messages is determined by what he
perceives, and his expectation of how any given message will be interpreted. The receiver,
in turn, interprets the meaning of messages based on her expectation of how the sender uses
each message. This implies that, if the parties communicate optimally, message use will
be characterized by firm thresholds in the subjective world. However, meaning necessarily
cannot be governed by firm thresholds when extended to the actual world, since the same
actual state may be mapped onto multiple signals that are associated with different messages.
If thresholds exist that delineate meaning in the actual world, they must be generated by
some mechanism other than the sender’s use of messages.

Other explanations of vagueness fall into the category of psychological accounts. The idea
of typicality and the degree to which an item belongs to a particular group has long been
discussed by philosophers (see Murphy, 2004, for a thorough review). More recent work
(e.g. see Hampton and Jönsson, 2012) discusses how even items that may be well-defined
when considered alone, may be become vague in combination. In contrast to our model,
these accounts are not typically concerned with gradable predicates, which makes a direct
comparison to our analysis, difficult.

However, the concept of vagueness-related partial beliefs (VRPBs), introduced in Schiffer
(2000) and further developed in Schiffer (2003), provides an avenue for connecting psycho-
logical accounts of vagueness in gradable predicates to our approach. In these accounts, when
confronted with a borderline case of a property, the receiver associates a vagueness-related
partial belief ∈ (0, 1) with the particular property. The innovation is that VRPBs do not
operate under the laws of probability. For example, the law of the excluded middle may be
violated by one’s VRPBs. Our account of vagueness adheres to classical probability theory

3Williamson (1994) argues that the mechanism linking use and meaning may be complicated and un-
known to the philosopher — but that this in no way refutes that the former determines the latter. We find
this account difficult to sustain. Plainly, if use determines meaning, it cannot be that meaning is determined
by factors inaccessible to the speaker when choosing which words to use. The mapping from use to meaning
should be readily determined by simply observing how the sender uses his words. We understand the mean-
ing of the word ‘tall’ by observing all the instances in which we describe an object as tall. To say that use
determines meaning isn’t to merely suggest that there is some mechanism that links the meaning of words
to their use. Rather, it is the stronger claim that use is itself that mechanism. Smith (2008) provides a more
detailed critique.
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and so at that primitive level seems in conflict with the psychological account. However, our
model endogenously identifies borderline cases and derives a probability that each of these
borderline cases will be described by a given message. Analogously, we can use our model
to consider the probability that a given message refers to a borderline case, something that
Schiffer (2010) considers seriously in the world of vagueness-related partial beliefs. Parikh
(2019) builds a model that incorporates the psychological account and discusses psycholog-
ical mechanisms by which beliefs might shift in ways that violates the laws of probability.
While not entirely complementary, the commonalities between this approach and ours are
notable.

2.2 Economic Accounts

There is a long literature on the economics of communication dating back to the canonical
models of persuasion (see Grossman, 1981; Milgrom, 1981) and cheap talk (see Crawford and
Sobel, 1982). Crawford and Sobel (1982) study a communication game between an informed
sender and an uninformed receiver who must take an action that affects both parties. The
paper provides two important insights. First, it demonstrates the (equilibrium) relationship
between use and meaning; the sender’s use is determined by the meaning ascribed to each
message by the receiver, and these ascribed meanings are in turn determined by the sender’s
use. Second, differences in preferences between a sender and receiver generate incentives
for the sender to not fully reveal his information to the receiver, thereby rationalizing im-
precise communication.4 Qing and Franke (2014), building on the model in Lassiter and
Goodman (2014), present a variant of this analysis in which the communicants’ strategies
are probabilistic, reflecting satisficing rather than perfectly maximizing behavior.

While some economists have directly applied the cheap talk framework to linguistics and
message meaning (see Jäger, Metzger and Riedel, 2011), until recently, economic models of
communication did not feature messages that could be construed as vague (Lipman, 2003,
2009). Blume and Board (2013a), with what they term ‘message indeterminacy’, are amongst
the first to study what we term vagueness. They do so by assuming uncertainty about lan-
guage competence (which roughly corresponds to the richness of vocabulary). ‘Message

4Imprecision is to be distinguished from vagueness. A message is imprecise if the sender associates
multiple sates with that message, thereby preventing the receiver from exactly learning the true state. If a
message is vague, it will additionally be unclear which set of states the message seeks to invoke. For example,
it is imprecise to say that ‘John’s height is at least 6 feet’, since saying so provides the receiver with a range
of possible heights for John, rather than his actual height. (We implicitly assume that John’s actual height
is salient to the receiver.) However, the message is not vague — it clearly delineates the set of heights that
John may have.
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indeterminacy’ arises when the receiver is uncertain about the sender’s language compe-
tence. Lambie-Hanson and Parameswaran (2016) study a communication game in which
message use is ideally modified to suit different ‘contexts’. (For example, ‘tall’ would be
used differently in the context of the town of Lilliput as compared to the town of Brobding-
nag.) In such a game, meaning will be clear as long as the sender correctly perceives the
receiver’s belief about the context. Vagueness arises when the sender’s message use fails to
coincide with the receiver’s belief about how the sender is communicating. As an example,
a sophisticated Lilliputian who knows to use the word ‘tall’ differently when communicat-
ing in the Brobdingnag context, will be able to communicate without misunderstanding.
Vagueness arises, not because different contexts per se, but because of a lack of common
knowledge about how each communicant is modifying his use to suit the context at hand.
Both these theories are semantic in that they locate the source of vagueness in differences in
(expected) message use between the communicants. Importantly, in both cases, speakers are
not intentionally vague. The sender always transmits a message with well-defined meaning;
vagueness arises when the meaning inferred by the receiver and the meaning intended by the
sender, diverge.

A different approach locates the source of vagueness in frictions in the communication tech-
nology itself, which may cause messages to become ‘garbled’ during transmission. Blume and
Board (2014) demonstrate that garbling may provide an incentive for the sender to be inten-
tionally vague. Rick (2013) similarly shows that there may be deliberate miscommunication
in the presence of garbling, and that this may improve outcomes for both parties.

3 Model

Let X = [0, 1] be the set of pay-off relevant states. There is a partially-informed sender (he)
who observes a noisy signal y about the true state x, and an uninformed receiver (she) who
has no information about the state. Both communicants share common prior beliefs over
the likely realization of the state, represented by a distribution function F with associated
continuously differentiable density f . We assume that F has full support on [0, 1], so that
f(x) > 0 for all x ∈ [0, 1]. The receiver must take an action a ∈ X that affects both the sender
and receiver. We abstract from cases where the sender has incentives to hide information
from the receiver (such as the standard models of cheap talk) by assuming that the sender
and receiver have identical preferences. This enables us to focus attention on the effect of
perceptive limitations on communication. For simplicity, we assume that both agents have
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state-dependent preferences represented by the utility index: u (x, a) = − (x− a)2. (Our
results can be generalized to accommodate any convex loss function.) Intuitively, the agents
seek to match the action to the realized state of the world, and suffer increasingly larger
losses as the action deviates from the true state.5

The sender observes signal y ∈ Y = [0, 1]. The signal technology is represented by a
(conditional) distribution function Q (y|x) with support on a convex subset of [0, 1], that
admits a continuously differentiable density q (y|x). The density q (y|x) is the ‘likelihood’
that the sender observes signal y given that the true state is x. We make two additional
assumptions about the signal technology. First, we assume that for each y ∈ [0, 1], there is
some x ∈ [0, 1] such that q(y|x) > 0. This ensures that the (unconditional) signal distribution
has full support on [0, 1]. Second, we assume that the signal is informative in the sense that
a higher signal statistically indicates a higher true state. This property is formalized by
assuming that Q satisfies the monotone likelihood ratio property. I.e. if x1 > x0 then
q(y0|x1)
q(y0|x0) ≤

q(y1|x1)
q(y1|x0) whenever y1 > y0.

The monotone likelihood ratio property is standard in signaling games. It implies that if the
true state is high, then the sender will be more likely to observe a high signal than a low
signal, than if the true state is low. Apart from this restriction, the perception technology
is quite general, and there is considerable scope for variation in precision and bias. For
example, the technology is consistent with a sender who perceives very tall and very short
buildings quite accurately, but is more error prone when observing buildings of intermediate
height. Similarly, it is consistent with a sender who systematically misperceives buildings as
taller than they are.

After observing a given signal, the sender can make inferences about the true state of the
world, according to Bayes’ Rule. Let F (x|y) denote the sender’s posterior belief about the
true state after observing signal y.6 The monotone likelihood ratio property implies that
these posterior beliefs respect first-order stochastic dominance.7 After observing a higher
signal, the sender rationally infers that the true state is more likely high than low.

Upon observing the signal, the sender can send a message m ∈ M = {m1, ...,mK} to the
5Under our framework, all states are pay-off relevant, and so knowledge of the state is salient to the

receiver. We could imagine a more expansive state-space, in which subsets of states were pay-off irrelevant,
for example because they encoded information that was incidental to the agents’ utility. If so, the receiver
might not care to distinguish between pay-off irrelevant states; a message that pooled pay-off irrelevant states
might reasonably be considered to be precise. This complication does not arise in our model, since all states
are pay-off relevant.

6These posterior beliefs are well defined, since every signal y ∈ [0, 1] can be generated.
7I.e. y1 > y0 implies F (x|y1) ≤ F (x|y0) for every x ∈ X.
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receiver. The set of messages is finite, capturing the idea that the communicants’ share
a limited vocabulary, and ordered, capturing the grades of an adjective. We can think of
each message as behaving similarly to a first-order predicate. To transmit message mk is to
ascribe to a subject the kth degree of a gradable adjective (with K possible degrees). In this
section’s motivating example, we had three possible messages, with m1 indicating that the
subject is ‘short’, and m3 indicating that the subject is ‘tall’.8

A strategy µ : Y → M for the sender assigns a message µ (y) to each signal y ∈ Y . A
strategy α : M → X for the receiver assigns an action α (m) to each message received. Let
F (x|y) be the sender’s posterior belief about the true state after receiving signal y, and let
G (x|m) be the receiver’s posterior belief about the true state after observing message m.
Let f (x|y) and g (x|m) be the associated densities. A Perfect Bayesian equilibrium consists
of a strategy µ for the sender, a strategy α for the receiver, and a pair (f (·|y) , g (·|m)) of
belief functions which satisfy:

1. For each signal y ∈ Y , the sender chooses the message which maximizes his expected
utility, given his posterior beliefs and the equilibrium strategy of the receiver:

µ (y) = arg max
m∈M

{
−
∫
X

(x− α (m))2 f (x|y) dx
}

2. For each messagem ∈M , the receiver chooses the action which maximizes her expected
utility, given her posterior beliefs:

α (m) = argmax
a∈X

{∫
X

(x− a)2 g (x|m) dx

}

3. The communicants’ posterior beliefs are determined according to Bayes’ Rule, given
their common prior beliefs and the equilibrium strategies:

f (x|y) =
f (x) q (y|x)∫

z∈X f (z) q (y|z) dz

g (x|m) =
f (x)

[∫
y∈Y q (y|x)1µ(y)=m [y] dy

]
∫
z∈X f (z)

[∫
y∈Y q (y|z)1µ(y)=m [y] dy

]
dz

8Many of our results would continue to hold if the sender had access to a larger set (e.g. a continuum) of
messages. We limit our attention to finite message spaces for two reasons. First, we think it is reasonable and
realistic in the context of gradable adjectives. Second, as we discuss on p.22, the properties of truth-degree
functions under finiteness more closely match the defining characteristic of vagueness — non-degeneracy of
truth-degrees (or ‘blurring’) at the boundaries.
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for every message m that is transmitted with positive probability.

Given strategies (µ, α), the ex ante expected loss from communication is:

ℓ(µ, α) =

∫
x∈X

[∫
y∈Y

(x− α(µ(y)))2q(y|x)dy
]
f(x)dx

This measure of loss captures the imperfections in communication that result in the receiver
taking an action different from the one best suited to the given state. We say that an equi-
librium is optimal if there is no feasible perturbation — that either adds to, or removes from,
the set of distinct actions that the receiver will take — that causes the ex ante expected loss
from communication to decrease.9 A sub-optimal equilibrium may arise if the sender’s strat-
egy involves redundancies, where multiple messages induce the receiver to take same action.
An example is the ‘babbling’ equilibrium, in which, after any signal, the sender transmits a
message at random, and the receiver, understanding that messages are uninformative, takes
the same ex ante optimal action regardless of the message received. Though equilibrium
consistent, such strategies forgo opportunities for the sender to transmit valuable informa-
tion to the receiver. In this paper, we focus on equilibria that are optimal, since we are
in a common values setting where the parties are strongly incentivized to communicate as
effectively as possible,

Even limiting attention to optimal equilibria, it is well known that communication games
of this sort typically admit multiple equilibria. In particular, for any given equilibrium, a
related equilibrium can be constructed by simply permuting the messages. For example, the
sender may use the word ‘tall’ to describe a person who appears small-heighted and use the
word ‘short’ to describe a person who appears large-heighted. This is an equilibrium provided
that the receiver understands the sender’s usage. An equilibrium of a communication game
is simply a commonly understood code; the same information could be transmitted, if the
code mapping signals to messages were reversed (say).

As previously mentioned, in this paper, we assume that there is a pre-existing, exogenous
ordering over messages that associates m1 with the lowest adjective grade and mK with the
highest. This requires that, though the meanings of messages are pinned down in equilib-
rium, messages enter the model with some exogenous content.10 For example, the parties

9If, fixing the number of distinct messages transmitted, equilibria were unique, then the optimal equilib-
rium is the one that minimizes the ex ante loss from communication.

10See Blume (2021) for a detailed discussion of the necessity of messages having exogenous content to
facilitate communication.
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will expected that the message ‘tall’ will be used to refer to large-heighted people and that
‘short’ will refer to short-heighted people. We focus on equilibria that respect this natural
exogenous ordering over messages. Consistent with the exogenous understanding, the equi-
librium analysis then determines more concretely which apparent heights are associated with
each message.

This paper uses a formal model to analyze the effect of imperfect perception on the nature
of communication. As is standard in all formal models, we make several assumptions that
keep the model simple and tractable. Our goal is to focus on factors relevant to the issue
of interest; namely the effect of imperfect perception on communication. To this extent, we
abstract from other factors that may be salient in their own right, but are not crucial to the
epistemic story. Before proceeding to the equilibrium analysis, we briefly comment on some
of our modeling choices.

First, though our notion of equilibrium requires that both sender and receiver to understand
and best respond to the strategic environment, we are sensitive to the objection that humans
are often not nearly so sophisticated. We do not dispute that agents often operate according
to some ‘exogenous’ view of how language works, based on their experience, intuition and
internalized ‘rules of thumb’. (Indeed, our assumption that messages are naturally ordered
requires that messages be endowed with some exogenous content11.) Rather, in invoking
the idea of equilibrium, our point is that if this ‘exogenous’ language is not equilibrium con-
sistent, then either the sender or receiver (or both) will have incentives to use or interpret
messages differently from the exogenous understanding. By contrast, if the exogenous lan-
guage is equilibrium consistent, then no such incentive to ‘mis-use’ will arise. Our notion of
equilibrium can thus to be understood as a situation where use and meaning are stable.12

Second, our analysis is confined to instances where the agents seek to communicate about a
property that exists on a grade (such as height). We acknowledge that such communication
does not typically occur in isolation; the parties will also need to use language to establish
any number of other salient facts, including the relevant context, the identity of the subject,
amongst others. In our analysis, we abstract from all these other processes, confining our
analysis to communication about the object’s grade. To this end, our use of the Crawford
and Sobel (1982) framework is appropriate for our task. But, of course, that framework

11Several models, including Crawford (2003), Franke (2014), and Blume (2021), specify the existence of
an exogenous ‘level-0’ language, with commonly understood meaning, which agents may use and interpret
strategically. For our purpose, fully specifying an exogenous language is not necessary — it suffices to note
that messages will used in their natural order.

12This interpretation of equilibrium — as the long run stable play of agents — is common in economics
(see Osborne et al., 2004).
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need not be applicable in modelling other aspects of communication, for which alternative
frameworks have been developed (see Parikh, 2019).

Third, though we assume that messages are used according to their natural ordering, we are
agnostic as to the particular labels attached to those messages. For example, the sender may
describe a building’s height as either ‘tall’, ‘neither-tall-nor-short’, or ’short’. Or in describing
preferences on a political spectrum, the sender may characterize a politician as belonging to
the ‘left’, ’center’, or ‘right’, but also to the ‘center-left’ or ‘center-right’. For our purposes,
these will understood as distinct messages. And the fact that the labels attached to the some
messages are hybrids (of sorts) of the others, does not affect how meaning is attached to
any of the messages in equilibrium, except that meaning must respect the natural ordering
over messages. Of course, the inclusion in the message space of messages with hybrid labels
requires the presence of messages with the more basic labels. And the presence of certain
messages enables the inclusion of other messages whose labels are hybrids of the former. Our
framework easily accommodates these details. Accordingly, we will understand the message
space to include all of the messages that the sender may wish to use, including those whose
labels may be hybrids of others.13

Finally, a simplifying feature of our model is that both communicants share a common prior
over the likely state of the world, and that all aspects of the model (other than the true state)
are commonly known by the players. In particular, we assume that the receiver understands
the nature of the sender’s perception technology. (Since the sensory abilities of humans
are roughly similar, we think it is not unreasonable to assume that the receiver can predict
how the sender may misperceive the world.) Again, we acknowledge the strength of these
assumptions, and the reality that the communicants’ beliefs about these objects may not
perfectly align. However, whilst such differences may affect the nature of communication,
they are not intrinsically linked to the problem of imperfect perception. To the extent that
these features induce vagueness, they do so through the channel of interpersonal differences
between the communicants, and therefore more properly represent a semantic source of
vagueness rather than an epistemic one (see Blume and Board, 2013b; Lambie-Hanson and
Parameswaran, 2016; Körner, 1962). Since these forces would continue to operate even if the
sender’s perception were perfect, their abstraction does not pose a threat to understanding
the epistemic account of vagueness.

13It may be objected that such a construction is not well defined, since for any set M , one can always
construct a larger set M ′ with M ⊂ M ′, where M ′ includes additional messages whose labels are hybrids
of the labels associated with message set M . But, in practice, there is a limit to how far this process can
be pushed. For example, it is rare to find hybrids of hybrids. Though we are happy to squeeze ‘center-left’
between ‘center’ and ‘left’, we would typically not further squeeze ‘center-center-left’ between ‘center’ and
‘center-left’, nor would we describe a building as ‘between short and neither-tall-nor-short’.
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Similarly, we assume that there is common knowledge about the set of messages that available
for use. Blume and Board (2013a) show that a lack of common knowledge in this dimension
is another channel through which vagueness (what they call ‘message indeterminacy’) can
arise. Since that channel has already been explored, we abstract from it here, though we
discuss the differences between our channel and various others in Section 4.4. Abstracting
from message indeterminacy also highlights key insights of this paper: that vagueness can
arise even when there is common knowledge about the message space, and that imperfect
perception operates as an independent source of vagueness to these others.

4 Analysis

Recall that to transmit message mk is to ascribe to the subject the kth degree of the gradable
adjective. But what precisely is the subject? We previously distinguished between subjective
messages that described what the sender perceives from objective messages which describe
what is. Subjective message are of the form: ‘The state appears to have property mk’. Since
such statements are conditioned upon the signal received by the sender, we say that they
live in Y -space. By contrast, objective statements are of the form: ‘The state actually has
property mk’. Since these statements are about the true state, we say that they live in
X-space. From herein, we use X-space and Y -space as a shorthand for indicating objective
and subjective claims, respectively.

With these distinctions in mind, we turn to solving the model. Our analysis is in two
parts. First, we characterize an optimal equilibrium of the communication game between
the imperfectly informed sender and the uninformed receiver. The equilibrium determines
how messages will be used by the sender to describe the world as it appears to him. We then
analyze the extension of this language to claims about the objective world.

4.1 Equilibrium and Properties of ‘Apparent’ Statements

We being by characterizing an optimal equilibrium of this game:

Proposition 1. There exists an optimal equilibrium of the communication game. In any
optimal equilibrium, the sender will use a threshold strategy and utilize all K messages. An
optimal equilibrium is characterized by a vector (s0, ..., sK) ∈ Y K+1 with 0 = s0 < ... < sK =

1 such that:
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1. The sender transmits message

µ (y) =

m1 if y ∈ [s0, s1]

mk if y ∈ (sk−1, sk] for k = 2, .., K

2. The receiver takes action α (mk) =
∫ 1

0
xg (x|mk) dx after receiving message mk; and

3. The communicants’ belief functions satisfy:

f (x|y) =
f (x) q (y|x)∫ 1

0
f (z) q (y|z) dz

g (x|mk) =


f(x)

∫ sk
sk−1

q(y|x)dy∫ 1
0 f(z)

[∫ sk
sk−1

q(y|z)dy
]
dz

if y ∈ (sk−1, sk]

0 otherwise

Additionally, if the signal technology is unbiased (so that E[x|y] = y for each signal y) and
the unconditional distribution of signals is uniform, then the optimal equilibrium is unique.

In an optimal equilibrium, the sender partitions the signal space into K disjoint intervals,
such that each interval is associated with a given message. The sender transmits message
mk whenever the received signal is contained within the kth interval. Since sk−1 < sk, each
message is transmitted with positive probability. Several properties of the equilibrium are
worth noting.

First, given the signal technology, both communicants form beliefs about the likely true
state according to Bayes’ Rule. For example, after observing signal y, the sender’s con-
ditional belief about the true underlying state x is given by the density f (x|y). Let
SS (y) = {x ∈ X| f (x|y) > 0} be the support of the sender’s conditional beliefs, which is
the set of possible true states that the sender cannot rule out. This corresponds to the ‘mar-
gin for error’ in Williamson (1994). The receiver similarly forms beliefs about the likely
true state. Although she doesn’t observe the sender’s signal, she can make inferences given
the message she receives and her knowledge of the sender’s optimal communication strategy.
Upon receiving message m, the receiver’s belief that the true state is x is given by the con-
ditional density g (x|m). In determining their optimal choices, both sender and receiver use
these updated beliefs about the true state; i.e. both players take into account the possibility
that the sender misperceives when making their choices.

14



Second, upon receiving message mk, the receiver’s choice of optimal action α (mk) simply
reflects her best guess about the true state, given her information. If the receiver knew the
state perfectly, she would choose the action that precisely matched the state. Since she does
not, she chooses the action that matches the state in expectation, given her updated beliefs.
It should thus be clear that the modeling fiction of the receiver taking an action simply
serves to capture the process of information transmission between sender and receiver.

Third, the sender’s optimal strategy assigns a single message to each signal. To see why,
note that the receiver chooses a different action for each different message received. If so, the
sender will generically not be indifferent between transmitting each of the available messages,
but will rather have a strict incentive to send the message that induces the action that is
closest to the sender’s expectation of the true state. Hence, there will generically be a unique
message associated with each signal. In spite of the sender’s uncertain perception, he will
typically be certain about the message he wishes to send, given what he perceives and given
the receiver’s anticipated response.

Fourth, by partitioning the signal space into K disjoint intervals, the sender transmits a
more informative message to the receiver than would be the case if either he used fewer than
K messages, or if the intervals associated with different messages overlapped. It is in this
sense that equilibria are optimal. The Proposition verifies that an optimal equilibrium exists
and is in threshold strategies.

The baseline assumptions outlined in Section 2 do not guarantee that the communication
game will admit a unique optimal equilibrium. The final part of Proposition 1 provides
sufficient conditions for the equilibrium to be unique, analogous to Theorem 2 in Crawford
and Sobel (1982). As with their result, the sufficient conditions that we provide are quite
strong.14 However, as Example 1 demonstrates, and as Crawford and Sobel themselves note
in their remarks following Theorem 2, there may be unique equilibria even when the sufficient
conditions are not met.

Since the sender’s optimal strategy partitions the signal-space, we can find thresholds
{s0, ..., sK}, which delineate the intervals and determine which message is sent. For exam-
ple, there will be some threshold perceived height, such that the sender will report that the
‘building appears tall’ whenever his signal of the building’s height exceeds this threshold.15

14Though Crawford and Sobel specify their sufficient conditions slightly differently, in the case of quadratic
preferences, their conditions reduce to the requirement of a uniform prior over states.

15Though the existence of a sharp threshold may seem stark, to a first order, we think it well captures
how agents intend (or attempt) to communicate. When assessing the temperature of water that is being
heated, one starts by reporting ‘warm’ and then switches to reporting ‘hot’ when the perceived temperature
is sufficiently high, consistent with threshold behavior.

15



Two comments about this threshold strategy are worth noting.

First, we stress that the threshold strategy arises as an equilibrium result, rather than as
an assumption of the model. Nothing in our model compels the sender to use a threshold
strategy. Rather, if the receiver chooses different actions after different messages, then the
sender will want to partition the state space. And, as long as the sender partitions the
state-space, the receiver will want to take different actions after different messages.

Second, we address the common objection16 that the location of thresholds is arbitrary and so
threshold strategies ought to be impermissible. It is indisputable that in drawing thresholds,
we distinguish seemingly similar states which just happen to fall on opposite sides of the
threshold. Taken in isolation, such distinctions do indeed appear arbitrary. Nevertheless,
when considered globally, these thresholds are in fact located optimally. Threshold strategies
are a consequence of the agents’ limited vocabulary. If there were no limit on the number
of degrees that we could express, we would associate a separate message with every possible
signal, thereby appropriately acknowledging every nuance and distinction between signals.
Since we make the reasonable assumption that our vocabulary is limited, we are forced to
‘pool’ several states into the same message. An unavoidable consequence of pooling is that
some pairs of states will be treated identically when pooled together even though they are
distinct, whilst other seemingly similar pairs of states will be treated differently by virtue of
not being pooled together. The more states that are pooled into the same message, the less
informative that message will be. The challenge for optimal communication is to pool states
together in the way that best facilitates information transfer. In our model, the location of
the thresholds {s0, ..., sK} have the property of minimizing the expected (square) deviation
between the true state and the receiver’s expectation of the state. It should be clear then,
that these thresholds are not located arbitrarily. Instead, their location depends on the
global properties of the system, anticipating the agents’ likely communication needs.

An important consequence of the above proposition is that language is not vague in the Y -
space. The sender’s communication strategy is characterized by an unambiguous mapping
from signals to messages, and this is understood by the receiver. Given the perceived height
of any building, the receiver knows whether the sender will describe it as tall or not. Although
imperfect perception may leave the sender with some doubt about the true state, it does not
prevent him from clearly indicating the signal that he has perceived. This is consistent with

16For example, the Sorites Paradox, which is commonly associated with the problem of vagueness, arises
precisely because of a rejection of threshold behavior. With threshold behavior, the induction argument that
generates the Sorites series would not hold globally.
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the critique in Lipman (2009), that a speaker should not be intentionally vague in his use
messages.

To demonstrate the features of optimal equilibria, we construct the following stylized exam-
ple:

Example 1. Suppose the state x is drawn from a uniform distribution on [0, 1], and that,
conditional upon the realized state x, the sender observes a signal y, which is itself drawn
from a uniform distribution on

[
x

1+2ε
, x+2ε
1+2ε

]
.17 The signal precision, or ‘margin for error’ is

parametrized by ε > 0, where a larger ε implies more imperfect perception. (We assume
ε < 3

8
for technical convenience.) For any true state, the sender’s signal is contained within a

band of uniform width. The size of this band indicates how accurately the sender perceives
the world.

Suppose K = 3, so that the sender has access to three messages (e.g. small, medium and
large). Then, there is an equilibrium characterized by thresholds: s1 (ε) = 1

6
+ 4ε+

√
1+4ε2

6(1+2ε)

and s2 (ε) =
5
6
− 4ε+

√
1+4ε2

6(1+2ε)
. The sender transmits message 1 whenever he observes a signal

y in the interval [0, s1 (ε)], he transmits message 2 whenever he observes a signal in the
interval (s1 (ε) , s2 (ε)], and he transmits message 3 whenever he observes a signal in the
interval (s2 (ε) , 1]. The receiver’s optimal action after each message are: a1 (ε) =

√
1+4ε2

3
− 1

6
,

a2 (ε) =
1
2

and a3 (ε) =
7
6
−

√
1+4ε2

3
. We provide a full characterization of this equilibrium,

including the equilibrium belief functions, in the Appendix.

As a benchmark, note that if ε = 0, so that the sender perfectly perceives the world, then
(s1, s2) =

(
1
3
, 2
3

)
and (a1, a2, a3) =

(
1
6
, 1
2
, 5
6

)
. The sender would partition the state-space into

three equally sized intervals, and the receiver implements the action which corresponds to
the expected state in each interval. Partitioning the state space into equally sized intervals
ensures that message sent is equally informative, no matter which state of the world is
realized.

When ε > 0, we notice that both the sender’s thresholds and the receiver’s optimal actions,
are responsive to the signal precision ε — both communicants are aware that the sender
imperfectly perceives the world, and they adjust their use and understanding of messages ac-
cordingly. Importantly, an imperfectly perceiving sender’s use may systematically vary from
the perfect-perception benchmark; the imperfectly informed sender doesn’t simply apply the

17The signal structure is not as complicated as it may seem. What we have in mind is a signal with
conditional distribution y ∼ U [x − ε, x + ε]. But this produces signals that lie outside the assumed signal
space [0, 1]. We simply do a linear re-scaling of signals to ensure y ∈ [0, 1].
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perfectly-perceiving sender’s thresholds to the imperfect signals that he observes.18

In summary, we have constructed an equilibrium in which it is optimal for an imperfectly
perceiving sender to partition the signal space into disjoint intervals (characterized by thresh-
olds), and to associate a distinct message with each interval. Accordingly, we have shown
that imperfect perception alone is not sufficient to cause messages to be vague. As we noted
previously, vagueness may still arise in this environment if we introduce additional frictions
to communication. For example, we could introduce multiple ‘types’ of receivers, where a
‘type’ may capture differences in the receiver’s beliefs about the prior distribution of the
state, the perception technology, the size of the sender’s vocabulary, and so on. Blume and
Board (2013a) and Lambie-Hanson and Parameswaran (2016) demonstrate that introducing
higher order uncertainty about these types is sufficient to induce semantic vagueness. And,
of course, the agents could make mistakes and misapply equilibrium strategies. However,
since our focus in this paper is on the effect of imperfect perception, and these effects operate
independently, we can safely abstract from those other channels.

4.2 Properties of Statements about Actualities

We now turn our attention to statements about actualities, rather than appearances. We
begin by noting that, if the sender could directly observe the true state x, we could simply
repeat the above exercise and characterize optimal communication strategies in X-space.
This ideal communication in X-space would retain all of the characteristics of the optimal
Y -space strategies, including that the use of messages is delineated by sharp thresholds. But
for the sender’s fallible perception, these would be the (epistemic theorist’s ideal) thresholds
that governed our use of messages. We caution, however, that, if we take impediments to
perfect perception seriously, such an exercise is no more than a thought experiment. Whilst
we can conceive of such a language, it is not actually available for use by an imperfectly-
perceiving an sender. Moreover, whilst we can insist on the meaning generated by such a
thought experiment as being ‘correct’ or ‘ideal’, doing so necessarily severs the relationship
between actual use (by imperfectly perceiving senders) and meaning. If use is to determine
meaning, then use cannot be conditioned upon information to which the sender lacks access.

18Indeed, as the signal imprecision ε increases, the sender will be more likely to transmit messages m1

and m3, and less likely to transmit m2. With greater imprecision, the receiver recognizes that a given signal
is consistent with a larger range of true states. Then, if the thresholds did not change, the average state
which generated message m1 would be higher, and the average state which generated m3 would be lower —
causing the receiver to choose higher α1 and lower α3, respectively. But, this feeds back into the sender’s
choice, making him less inclined to transmit m2.
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Instead, we take the following approach: We retain the assumption that the sender im-
perfectly perceives the world, and instead ask how to give meaning to those messages as
claims about the actual world. Recall that, when the sender transmits message mk, this has
the unambiguous meaning in Y -space, that the sender’s signal is contained in the interval
(sk−1, sk]. The receiver is able to determine this meaning because she understands which
signals are associated with which messages. Similarly, to determine meaning in X-space,
the receiver must understand the mapping from states to message. Of course, we have just
argued that the sender can only condition his message on his signal, and not the true state.
Since a given state can generate multiple signals, a state may be associated with multiple
messages. The mapping from states to messages need not be unique. This is the channel
through which vagueness arises.

We formalize this idea. Suppose the true state is x, and that the sender receives signal
y which is consistent with the signal technology Q. Given the above discussion, we know
that the sender will transmit a unique message µ (y) which depends on the signal y. The
communication strategy is not random or probabilistic. However, from the perspective of
an external observer who can perfectly perceive the state, but not the sender’s signal, the
sender’s communication strategy may appear random — since the sender may send different
messages after receiving different signals in the same state. (One way to conceive of such an
observer is to suppose that the true state is revealed, ex post, and agents keep track of the
frequency with which the sender transmits each message in each state.) Let ϕk (x) denote
the probability that state x is characterized as having property mk. We know that:

ϕk (x) =

∫
{y∈Y |µ(y)=mk}

q (y|x) dy =

∫ sk

sk−1

q (y|x) dy

The function ϕk (x) indicates the probability that property mk is ascribed to state x by
an imperfectly perceiving sender (who only observes a noisy signal y of x). By the laws of
probability, we know that

∑
k ϕk (x) = 1. We can think of ϕk (x) as the membership function

which determines the application of predicate mk to state x. Since use determines meaning,
these probabilities have the natural interpretation as the degree of truth that x has property
mk. If the sender is more likely to associate state x with property mk than ml, then it is
natural (in the sense of use determining meaning) to assign a higher degree of truth to x

having property mk than ml. We stress that these truth degree functions are not primitives
of the model (i.e. they are not taken as exogenous facts). Rather, they are determined in
equilibrium by the sender’s optimal Y -space message use and the signal technology which
determines the sender’s perception.
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Before characterizing the properties of truth-degrees, we briefly digress to make the follow-
ing observation: The process of extending an optimal Y -space communication to X-space
is analogous to the procedure that determines truth (or super-truth) under the supervalua-
tionist approach. For each actual state x, we consider every signal y that could potentially
be observed by the sender (given the perception technology Q), and ask which message the
sender would transmit, given his observed signal. The state x is then definitely character-
ized by property mk if, under every possible signal-realization, the sender would transmit
message mk. By contrast, if different signal realizations result in different messages being
transmitted, then the property associated with state x is indefinite. We note that our model
directly determines which extensions are admissible in generating the supervaluation, and
that, in particular, admissibility is governed by the perception technology Q and the sender’s
optimal Y -space strategy. Our model also demonstrates a connection between the super-
valuation and truth-degrees approaches to vagueness. Whereas the supervaluation approach
enumerates the possible interpretations under admissible extensions, truth-degrees describe
how likely these interpretations are.

Following the literature on fuzzy sets (see Zadeh, 1975), we define the support of message mk,
S (mk) = {x ∈ X|ϕk (x) > 0}, as the set of states that are associated with message mk with
positive probability. Similarly, the core of message mk, C (mk) = {x ∈ X|ϕk (x) = 1}, is the
set of states that are definitely associated with message mk. Naturally C (mk) ⊆ S (mk). If
x ∈ C (mk), then the sender’s use will be definite and non-random in state x. If x ∈ S (mk)

then the receiver understands the meaning of mk to convey the possibility that the true state
is x. Communication will be non-vague if every state is associated with a unique message
— i.e. the core and support coincide for every message. By contrast, if messages are vague,
there must be some state which is associated with multiple messages, which implies that the
supports of at least two messages must overlap. The set of states for which the supports
overlap are precisely the ‘borderline regions’ that characterize vagueness.19

For concreteness, we return to the example in the previous section, and characterize its
extension to X-space. As before, the full characterization can be found in the Appendix.
Let ε∗ = 3−

√
3

8
. Figure 1 shows the equilibrium truth-degree functions and the support and

core sets for the messages in the above example. There are two cases to consider. The left
panel illustrates the case when the ‘margin for error’ is relatively small, ε < ε∗. The right

19Seemingly implicit in the idea that boundary cases characterize vagueness is that there are also some
states that are not on the boundary — i.e. there are some messages with non-empty core. If the core of
every message is empty, then every state is a boundary case. But then, meaning would be indeterminate in
a very different manner than we typically associate with vagueness. Thus, the requirement that some states
are associated with multiple messages is necessary, but not sufficient, for vagueness.
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Figure 1: Truth degrees implied by the equilibrium communication strategies in Example
1. The left panel illustrates a situation with a small ‘margin for error’ (ε < ε∗). The right
panel illustrates the situation with a large ‘margin for error’ (ε ∈

(
ε∗, 3

8

)
).

panel illustrates a scenario with a larger margin for error.

Consider the left panel, with a small ‘margin for error’. The left solid (red) line is the
truth-degree function ϕ1(x) for message m1. Similarly, the dashed line and the right solid
(blue) line are the truth-degree functions ϕ2 and ϕ3 associated with messages m2 and m3,
respectively. (The linearity of the truth-degree functions is an artifact of the state and signal
both being drawn from uniform distributions. Generically, these functions will be ‘curved’.)
The core and support sets are indicated for message 1. The core of m1 contains states that
are sufficiently small, such that even if the sender receives a (conditionally) above-average
signal, this signal will still be low enough that he is guaranteed to transmit m1. Likewise, the
core of m3 contains states that are sufficiently large that the sender is guaranteed to receive
a signal above threshold s2, and so is guaranteed to transmit m3. By contrast, there are
a range of states for which the sender reports multiple messages with positive probability.
Intuitively, such states will be ‘close’ to a threshold of the Y -space language (in this example,
if it lies within ε

1+2ε
of a threshold), so that the induced signal will lie on one side of the

threshold in some instances, and on the other side in other instances. In such regions, truth-
degrees are positive for multiple messages. (Consistent with the theory, these truth-degrees
must always sum to one, since it is certain the sender will transmit some message.) These
regions cannot be contained in the core of any message — they are the ‘borderline cases’
that are characteristic of vagueness.

Next, consider the right panel, where the ‘margin for error’ is relatively large. This case is
distinguished from the previous one in two ways. First, the core of m2 is empty — there
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is no state for which we can be certain the sender will transmit m2. The margin for error
is sufficiently large that for any intermediate state there is always the possibility that the
sender may occasionally perceive it as being small or large. The core of m1 and m3 remain
non-empty, although we note that these sets are smaller than in the previous case. By
contrast, the supports of all messages are larger; as the margin for error increases, so does
the range of states that may be associated with a given message. Second, there exists a
range of states for which the sender reports all three messages with positive probability. The
margin for error is sufficiently large that, when the true state takes an intermediate value,
the sender will sometimes perceive it as being (sufficiently) small and other times perceives
it as being (sufficiently) large.

Notice that the set of boundary cases — those states with truth degrees strictly between 0

and 1 — are themselves a function of the perception technology. As this technology becomes
more precise (i.e. as ε decreases), the set of boundary cases will narrow as well, and more
states will be clearly associated with one message or other.

Finally, as the example makes clear, vagueness is inherent to certain states and not to
others. And, this is true even though the perception technology behaved identically across
all states. It is not simply the case that meaning is vague in regions of the state space where
the perception technology is particular noisy, and clear in regions where the perception
technology is more precise. Instead, meaning becomes vague in regions of the state-space for
which the generated signals will straddle the optimal Y -space thresholds. Whilst this does
depend on the precision of the perception technology, it is also depends in a far more basic
sense on the state itself, and its ‘location’ relative to the threshold. As such, vagueness is
necessarily metaphysical — it is inherent in the boundary cases themselves.

The preceding discussion also illustrates the role that finiteness (or more generally, the
requirement that there be more states than messages) plays in our model. To see this,
consider how truth degrees would be different in the example if the communicants had
access to a continuum of messages m ∈ [0, 1]. If so, the sender could perfectly reveal her
signal to the receiver. However, since every state can be mapped onto multiple signals (given
the sender’s imperfect perception), it must then follow that every state can be mapped onto
multiple messages.20 The core of every message will be empty. All states will be boundary
cases.

20Formally, let ϕ(x, y) denote the truth density assigned to state x having the yth degree of the relevant
property being ascribed. ϕ is a density, rather than a probability mass, in the sense that ϕ(x, y)∆y is
the truth degree associated with state x being assigned a property in the neighborhood ∆y of y. Clearly
ϕ(x, y) = q(y|x), and in our example, ϕ(x, y) = 1

2ε for each y ∈
[

x
1+2ε ,

x+2ε
1+2ε

]
.
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Such dynamics do not sit well with typical accounts of vagueness. After all, there is no
disagreement that a man with no hair is bald, nor that a man with a thick head of hair
is ‘not-bald’. The trouble lies in identifying the boundary between these predicates. Thus
vagueness is typically characterized by messages with non-empty cores, but overlapping
supports, creating a subset of indeterminate ‘boundary cases’. As Example 1 demonstrates,
finiteness does not guarantee that every message will have non-empty core. However, as long
as the number of messages is small relative to the imprecision in the sender’s perception,
there will likely be at least some messages with non-empty core.

4.3 Properties of Truth Degree Functions

We now characterize the properties of truth-degree functions. We demonstrate that truth-
degrees satisfy three properties. First, they are continuous. Second, they are monotone.
Third, they are not truth-functional, but instead satisfy the axioms of probability.

Lemma 1. Suppose Q (y|x) is continuous in x for every y ∈ Y . Then, for every k = 1, ..., K,
the truth-degree function ϕk (x) is continuous in x.

Loosely speaking, continuity is the property that small changes in the inputs of a function
cannot cause dramatic changes in outputs. Continuity of the perception technology for-
malizes the intuitive assumption that small changes in the underlying state (what is being
observed) should not dramatically change the sorts of signals that are generated. For ex-
ample, if the sender systematically misperceives a person whose true height is 1.7 meters
as being much shorter than he actually is, the sender should not then systematically mis-
perceive a slightly taller person as being much taller than is actually the case.21 Lemma 1
shows that a continuous perception technology causes truth-degrees to be continuous.

An important consequence of continuity is that truth-degree functions respect the desidera-
tum that we treat similarly situated states similarly, ex ante. Since the sender cannot easily
distinguish between similarly situated states, we should not expect the probability of the
sender ascribing property mk to vary dramatically across those states. And yet this conti-
nuity seems to be in stark contrast to the threshold strategy that we derived in the previous
section, which necessarily makes stark distinctions between similar objects. In fact, these

21To be clear, we are not saying that whenever two states are similar, the sender will perceive them
as being similar. As we have argued repeatedly, the same state may be perceived differently in different
instances. Rather, our claim is that likelihood of the sender (mis)perceiving in some way or other should be
similar in the two states.
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features are perfectly consistent with one another. It is true that small changes in the signal
can dramatically affect which message is transmitted. But, truth degrees are constructed
as if by an external agent who observes the true state; and small changes in the state can
only generate small changes in the likelihoods of signals that will result in different messages
being transmitted. Hence, the external observer’s beliefs will change in a gradual fashion,
even though the sender’s message choice may change starkly in any given instance.

Another consequence of continuity is that use and meaning cannot be characterized by firm
thresholds in X-space. Indeed, the fact that use and meaning are optimally characterized
by threshold behavior in Y -space precludes the possibility that they respect thresholds in
X-space, since the mapping between the two spaces is stochastic. Things which look de-
terminate in Y -space must necessarily seem probabilistic in X-space. As we noted at the
beginning of this subsection, it is certainly possible to define a communication strategy over
X-space that is characterized by thresholds — however, such a language cannot respect
the requirement that use determines meaning, since the sender does not have access to the
appropriate information to use messages in the required way. Accordingly, and in contrast
to Williamson (1994), we demonstrate that when subject to imperfect perception, optimal
communication cannot be characterized by distinct thresholds with respect to statements
about actualities. Instead, we show that as the true state increases, there is a gradual and
continuous transition in which messages are sent — what Williamson (1994) describes as a
‘smear’ — which renders meaning vague.

A second property of truth-degree functions is that they are monotone in the ordering over
the message-space. Recall, the set of messages was ordered so that m1 indicated the lowest
degree of the gradable adjective and mK denoted the highest degree. Monotonicity captures
the idea that that higher ranked states will be more likely to be described using messages
of higher (rather than lower) degree. To make this notion precise, let Φk (x) =

∑k
j=1 ϕj (x)

denote the truth-degree assigned to state x having property mk or lower. It is easily verified
that Φk (x) = Q (sk|x). We have the following Lemma:

Lemma 2. Suppose x0 < x1. Then for every k, Φk (x0) ≥ Φk (x1).

Suppose that building A is (actually) taller than building B. Since the sender perceives
the world imperfectly, it may be that in some instance, he categorizes B as tall and A as
not. However, Lemma 2 demonstrates that this cannot be systematically true. Lemma 2
is a consequence of the monotone likelihood ratio property. This implied that when the
true state is high, the sender must be more likely to receiver a higher signal, than when

24



the true state is low. Whilst the sender’s classification of objects may be imperfect, it must
be statistically consistent with the true grading of objects. Higher graded objects cannot
on average be described by lower degrees of the adjective. The assignment of truth-degrees
must accord naturally with the use of comparatives.

We stress that the monotonicity property is with respect to cumulative truth-degree func-
tions, rather than individual ones. To make this clear, return to the example of building A
which is taller than building B, and suppose the sender can describe these using one of three
terms — short, medium and tall. Although ‘medium’ expresses a higher degree than ‘short’,
it need not be that the sender is more likely to describe building A as medium-heighted than
building B. If building A is a sky-scraper, he may be certain to describe it as ‘tall’, whilst
he may well describe building B as medium-heighted in some instances. However, it will
be true that the sender is more likely to describe building A as either ‘medium heighted’ or
‘tall’, than he is to describe building B as such.

Finally, we note that, in strong contrast to most truth-degree proponents, our equilibrium
truth-degrees are not truth-functional.22 A simple example makes this clear. Suppose an
object is equally likely to be ascribed each of the properties ‘small’, ‘medium’, ‘large’, and
‘enormous’, so that the truth-degree of each is 1

4
. Then the truth degrees associated with the

ascriptions ‘either small or medium-sized’, ‘either medium-sized or large’, and ‘either large or
enormous’ will each be 1

2
. (This follows from the axioms of probability, which the truth-degree

functions obey, since they are probability measures by construction.) We have constructed
compound statements using the disjunction, and thus far, the truth-degree of the disjunction
appears to simply be the sum of the truth-degrees of the disjuncts. However, now consider
the ascriptions ‘either small, medium-sized or large’ and ‘either small, medium-sized, large
or enormous’. The former is the disjunction of the first and second compound statements
above, whilst the latter is the disjunction of the first and third compound statements. If
our truth degrees are truth functional, then the truth degrees of these final two sentences
must be the same. However, by the laws of probability, the truth-degree of the former is
3
4
, whilst the truth-degree of the latter is 1. Clearly, we cannot universally construct the

truth-degrees of compound statements, from the truth-degrees of the constituent statements.
(In one of the cases above, we needed some additional information, namely the truth-degree
of the conjunction.)

Truth functionality can be a valuable property in a world where truth-degree functions
are taken as primitive. Absent truth-functionality, the truth-degree proponent must spec-

22Truth-degrees are truth-functional if the truth degree of compound sentences can be determined directly
from the truth degree of each component sentence.
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ify truth-degrees for every conceivable sentence that can be constructed, no matter how
long or cumbersome. Such a burden is evidently onerous. Truth-functionality alleviates
this need, by reducing all truth-degrees down to the truth-degrees of the underlying simple
statements. However, the benefit of truth-functionality is less important in a world where
truth-degrees are not primitive, but determined by other known features of the model — in
our case, the sender’s perception technology and the equilibrium communication strategy.
This information (which we used to construct truth-degrees for simple statements in the first
place) suffices to construct truth-degrees for any conceivable statement. Truth-functionality
provides no additional benefit. Indeed, since the truth-degree functions in our model are
probability measures, we can use the laws of probability to map truth-degrees of simple
statements onto truth-degrees of compound statements, and vice versa. Thus, the purpose
of truth-functionality is preserved. Of course, excepting for special cases, this mapping will
not be truth functional, reflecting the idea that the joint distribution of random variables
cannot generically be constructed from the marginal distributions alone.

Truth functionality is, of course, not without its own problems. For example, Fine (1975),
Williamson (1994) and Edgington (1997) (amongst others, although see Smith (2008) for
a defense), note that truth-functionality necessitates that truth-degrees violate standard
results in classical logic, including the Law of the Excluded Middle. Our truth-degrees-as-
probability-measures approach avoids these pitfalls, which provides additional support for
this approach to measuring degrees of truth. Although truth functionality may generically
be desirable, these benefits vanish in the presence of a well-defined probability measure that
can consistently assign truth-degrees.

4.4 Discussion

We conclude our analysis with a brief comparison of the mechanism that generated vagueness
in our model from those in other studies. At its core, vagueness arises in our model, despite
the sender trying to communicate in a non-vague manner, because an exogenous source of
randomness caused the same state to be mapped onto different messages. In our model, we
locate that exogenous source of randomness in the imperfect perception of the sender.

Other models locate it elsewhere. Blume and Board (2013a) present a model where the
sender perceives perfectly, but the receiver is uncertain about the sender’s ‘language compe-
tence’. For example, when communicating about heights, does the sender limit himself to a
small vocabulary (e.g. ‘short’ and ‘tall’) or a larger one (e.g. ‘short’, ‘medium-height’, and
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‘tall’). The receiver’s uncertainty about the sender’s vocabulary renders messages vague in
equilibrium, even though (as in our model), each type of sender communicates according to
clear thresholds. The vagueness arises because there will be a set of boundary cases which
the low-vocubulary-type sender would describe as ‘short’ but the high-vocabulary type would
describe as ‘medium-height’. Being uncertain about the sender’s type, the receiver associates
those objects with both messages.

Other work (see Blume and Board, 2014; Blume, Board and Kawamura, 2007) explore models
where the sender perceives perfectly and there is no uncertainty about his language compe-
tency, but errors in the transmission technology cause messages to occasionally be rendered
incorrectly (or ‘garbled’). Here again, the sender’s communication strategy uses clear thresh-
olds, but the receiver will be uncertain about whether she received the correct message or
not. Garbling causes the same state to be associated with multiple different messages, thus
generating vagueness.

Under the hood, the mechanism underlying each of these accounts of vagueness is much the
same. And yet, the particular details of how the source of randomness is introduced will
have different implications for the characteristics of the equilibrium and the properties of
truth degrees. Here, we outline a few differences that arise between our model and these
variants.

First, consider the language-competency model of Blume and Board (2013a), and for con-
creteness, take the above example of a sender who either uses two or three messages. Since
only the high-vocabulary type uses the middle message, its use perfectly reveals the sender’s
type. There will be no uncertainty about which states are associated with that message. By
contrast, since both types use messages ‘short’ and ‘tall’, but for different intervals of states,
these messages will be rendered vague in equilibrium. As noted above, there will be a set of
boundary cases, where the low-vocabulary sender uses the message but not the high-type.
Notice the contrast to our imperfect perception model (and also the model with garbling),
in which, generically, every message will be associated with some boundary cases.

Second, the behavior of the truth degree functions is quite different than under our approach.
For example, again consider the language-competency model of Blume and Board (2013a),
in which the sender may either use two or three messages, and let ρ be the probability that
the receiver assigns to the sender being the high-vocabulary type.23 There are set of states

23Following Blume and Board (2013a), we assume that the high-vocabulary type is aware that they may
be mis-perceived as a low-type, but not vice versa. Keeping the same preferences as in our model, and
assuming that x ∼ U [0, 1], the following is an equilibrium: The low-vocabulary sender transmits ‘short’ if
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for which both types of senders will transmit ‘short’. These messages will be in the core of
the message ‘short’, and will have associated truth-degree 1. However, there will also be a
set of states for which the low-type will transmit the message ‘short’, while the high type
will transmit ‘medium-height’. These states are in the support of the message ‘short’, and
all states in this range will have truth degree 1− ρ. Truth degrees in the garbling model will
behave similarly, except that, generically, the core of every message will be empty (assuming
every message may be possible miscommunicated).

Note the difference to our model with imperfect perception, where truth degrees are contin-
uous and gradually decline from 1 (for states near the core) to 0 (for states near the edge
of the support). This gradualism is a hallmark of vagueness. As we remove more and more
hair from a person’s head, we should become increasingly confident in describing them as
‘bald’. That dynamic arises in our model. By contrast, under the alternate approach, the
receiver will be equally uncertain about whether to describe the person as bald or not, over a
range of cases. The reason for this difference lies in how the exogenous randomness operates.
Under the imperfect perception approach, this randomness is a function of the state, which
causes truth degrees to vary across states. By contrast, under the other approaches, the
randomness is statistically unrelated to the underlying state.

Similar differences arise in other approaches. For example, consider the ‘Intentional Vague-
ness’ model Blume and Board (2014), whose setup includes a common-interest game as a
special case.24 That model departs from ours in other ways; for example it inverts the struc-
ture between states and messages. In the ‘Intentional Vagueness’ model, there are only two
states but a continuum of messages. By contrast, in the typical Sorites paradox setup, there
are a large number (approximated by a continuum) of states and only two messages. States
on the extremes are easily identified with one message or other; however there is a blurring of
the boundaries between the messages, so that a subset of intermediate states are occasionally
associated with either message. Such a dynamic does not arise in the ‘Intentional Vagueness’
setup. With only two states and garbling, there are no states that are identified with a single
message; all states are boundary states. Moreover, we cannot generate a Sorites series by

x ∈ [0, 1
2 ] and ‘tall’ otherwise. The high-vocabulary type transmits ‘short’ if x ∈ [0, 3−ρ

8−2ρ ], ‘medium-height’
if x ∈ ( 3−ρ

8−2ρ ,
5−ρ
8−2ρ ], and ‘tall’ if x ∈ ( 5−ρ

8−2ρ , 1]. The receiver’s actions are (aL, aM , aH) = ( 2−ρ
8−2ρ ,

1
2 ,

6−ρ
8−2ρ ). For

this equilibrium, truth degrees for the message ‘short’ are: ϕ1(x) = 1 for x ∈ [0, 3−ρ
8−2ρ ], ϕ1(x) = 1 − ρ for

x ∈ [ 3−ρ
8−2ρ ,

1
2 ], and ϕ1(x) = 0 for x ∈ [ 12 , 1]. Truth degrees for the remaining messages are computed similarly.

24In that model, the sender perfectly observes a binary state x ∈ {0, 1}, and transmits a message m ∈ [0, 1]
to the receiver. (In equilibrium, the sender will transmit m0 = 0 in state 0 and m1 = 1 in state 1.) The
message becomes garbled during transmission, so that the receiver observes message q ∼ N(m,σ2). The
receiver then takes an action a. As in our model, both agents have common quadratic loss preferences, and
so the receiver’s equilibrium action is simply her posterior belief that the state is 1.
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gradually increasing the state and asking what message would be attached to it. We could
gradually increase the message and ask which state likely generated that message, but that
provides the answer to the question: ‘how does the posterior belief change as the message
increases?’, which is different from the question ‘how does the likelihood of a state being
associated with a particular predicate change as the state increases?’

Of course, there are apparent similarities between the ‘Intentional Vagueness’ model and our
own. For example, the receiver’s posterior belief a looks like a ‘smear’, increasing from close
to 0 (when the receiver’s message is low) to almost 1 (when the receiver’s message is high).25

However, the receiver’s posterior belief is not the truth degree function for the proposition
‘the state is 1’. Nor was it in our model. Instead the truth degree (at least as perceived by
the receiver) is simply given by the density of the N(1, σ2) distribution — which does not
behave like a smear.

The construction of truth degrees themselves becomes problematic in the ‘Intentional Vague-
ness’ framework. In our model, there is an ‘objective’ mapping between states and messages
that defines truth-degrees. By contrast, in ‘Intentional Vagueness’, due to the garbling, the
mapping between states and messages is different for the sender and receiver. If we were
to associate this mapping with truth degrees, then truth degrees would be degenerate for
the sender (who associates a single message with each state) but non-degenerate for the
receiver. But truth degrees are not usually taken to be ‘subjective’ in this way — they are
properties of messages/statements and not contingent on the speaker/listener. Of course,
the fact that different speakers may understand the same message differently may explain
why a proposition has a truth degree strictly between zero and one; but that is a different
thing from the proposition having speaker-depending truth degrees.

5 Conclusion

This paper examined imperfect perception as a source of vagueness. We developed a model
of communication in which an imperfectly informed sender may transmit a message to an
uninformed receiver, who must take an action that affects both parties. Both agents share
identical concave preferences, which incentivizes complete information transfer between the
parties. To focus attention most cleanly on the effect of imperfect perception, we abstract

25Blume & Board endow the garbling technology with unbounded support, so any message can by gener-
ated by either state. With bounded support, the receiver would be able to perfectly identify certain messages
with only one state or other, and so posterior beliefs would be exactly zero or one in some instances.
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from other features that may independently cause messages to be vague. Although our
framework is stylized, we are able to shed light on the several properties of vagueness.

Our analysis begins with the recognition that, in a world with imperfect perception, we must
distinguish two sorts of statements — subjective statements which convey what the sender
perceives, and objective statements which convey what actually is. Since the sender only
observes signals about the world — and not the actual world itself — he can only transmit
subjective statements, and his messages ought to be interpreted as such. Nevertheless, we
can attempt to imply meaning about the actual world from the sender’s message about the
perceived world.

Our analysis also recognizes that a sender’s optimal choice about which message to transmit
will depend on his belief about how the receiver will interpret messages, and that the receiver
will optimally interpret messages according to her expectation of when and how the sender
transmits each available message. Use and meaning are, as such, jointly determined in
equilibrium, given the agents’ communication needs and the sender’s perception technology.

We first characterized an optimal equilibrium when the communication is understood to be
about what the agent perceives. We showed that, notwithstanding the sender’s imperfect
information, communication in this world is non-vague and characterized by firm thresh-
olds that demark the use of words. Intuitively, although the sender understands that his
perception of the world may not be accurate, this does not prevent him from clearly com-
municating what he has perceived. Moreover, since the receiver can rationally understand
the sender’s communication strategy, she can clearly infer what the sender has perceived.
Hence, communication is not vague.

We then consider how to assign meaning to statements, if they are to be interpreted as being
about actualities. (As we argue, the sender must continue to transmit messages based on
what he perceives.) Given the sender’s imperfect perception, he may in different instances
ascribe different properties to the same state of the world. Although, the sender’s use is
determined in any given instance by his signal, his use may appear random or probabilistic
to an external agent who observes the state but not the signal. We interpret these prob-
abilities as truth-degrees, since they capture the likelihood that the sender will ascribe a
particular property to a given state, ex ante. As such, we provided micro-foundations for
truth-degrees as a consequence of the equilibrium communication (about what is perceived)
and the sender’s perception technology, thus connecting two distinct theories of vagueness.
Indeed, epistemic theory provided the mechanism that enabled us to generate the descriptive
features of the truth-degrees approach.
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A useful feature of our approach is that, since truth-degrees are determined (in equilibrium)
rather than assumed, we can investigate the properties that truth-degree functions are likely
to satisfy. We derived three features of truth-degree functions that were predicated upon
standard assumptions about the perception technology. First, we showed that truth-degrees
are continuous, capturing the natural idea that senders will, on average, similarly describe
similarly situated states. We showed that continuity of truth-degrees and gradualism was a
feature that naturally arose in our imperfect perception framework, but was unlikely to obtain
under other mechanisms. An important consequence of continuity is that communication
about the objective world cannot simultaneously satisfy the use-determines-meaning crite-
rion and be characterized by thresholds. This result stands in strong contrast to epistemic
theory, which insists that the underlying language is not inherently vague. Additionally, we
showed that truth-degree functions are monotone, and therefore accord naturally with the
use of comparatives. Finally, we demonstrated that our induced truth-degree functions were
not truth functional. However, we argued that this was not problematic, since truth-degrees
of compound statements could still be discerned from the truth-degrees of simpler state-
ments, given the laws of probability. Hence, the essential benefit of truth-functionality is
preserved. Moreover, we showed that truth-degrees-as-probabilities avoid some of the more
problematic features inherent to truth-functional truth-degrees, such as inconsistency with
classical results in logic, such as the law of the excluded middle.
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Appendices

Proof of Proposition 1. We prove the proposition in three stages. First, we show that
an equilibrium exists in threshold strategies. Second, we show that any optimal equilibrium
must utilize all messages, and thus be in threshold strategies. Third, we show that the
equilibrium is unique under certain conditions.

Existence. The proof of existence is itself in several parts. We first conjecture a particular
threshold strategy for the sender. Taking this strategy as given, we compute the receiver’s
optimal action for each message (which requires that we first compute the receiver’s posterior
belief about the true state given the transmitted message). Having computed the receiver’s
strategy, we then find the sender’s best response. The strategy profile is an equilibrium if the
sender’s best response to the receiver coincides with the original conjecture of the sender’s
strategy (which informed the receiver’s strategy). Using a fixed point argument, we show
that there exists a threshold strategy for the sender that is equilibrium consistent.

Let Σ =
{
s ∈ Y K+1|s = (s0, ..., sK) with 0 = s0 ≤ ... ≤ sK = 1

}
. Take some s ∈ Σ. Suppose

the sender uses the strategy: µ (y) = mk provided that y ∈ (sk−1, sk].

Step 1: The agents’ beliefs. First, let us compute the players’ beliefs about the state. Using
Bayes’ Rule:

f (x|y) = f (x) q (y|x)∫ 1

0
f (z) q (y|z) dz

and:

g(x|mk) =
f (x)

[∫ sk
sk−1

q (y|x) dy
]

∫ 1

0
f (z)

[∫ sk
sk−1

q (y|z) dy
]
dz

provided that sk−1 < sk. If sk−1 = sk, we set g(x|mk) = f(x|sk). (I.e. we assume that
the signal must have been y = sk if the out of equilibrium message mk is ever transmitted.)
Note that since

∫ sk
sk−1

q (y|x) dy is continuous in the sender’s communication strategy s, so is
g (x,mk).

Two properties of the belief functions will prove useful. First, by the monotone likelihood
ratio property, the sender’s posterior beliefs respect first order stochastic dominance. I.e.
F (x|y1) ≤ F (x|y0) whenever y1 > y0. (We show this in the proof of Lemma 2, below.)
Second, and relatedly, the receiver’s posterior beliefs also respect first order stochastic dom-
inance. I.e. G(x|mk) ≤ G(x|mk′) whenever k > k′.
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To see this latter property, notice that:

G(x|mk) =

∫ x
0
f(z)

(∫ sk
sk−1

q(y|z)dy
)
dz∫ 1

0
f(z)

(∫ sk
sk−1

q(γ|z)dγ
)
dz

=

∫ sk

sk−1

 ∫ 1

0
f(z)q(y|z)dz∫ sk

sk−1

(∫ 1

0
f(z)q(γ|z)dz

)
dγ

 ·
∫ x
0
f(z)q(y|z)dz∫ 1

0
f(z)q(y|z)dz

dy

=

∫ sk

sk−1

h(y|mk) · F (x|y)dy

where h(y|mk) =
∫ 1
0 f(z)q(y|z)dz∫ sk

sk−1
(
∫ 1
0 f(z)q(γ|z)dz)dγ

is the (conditional) density over the signals that induce

the sender to transmit message mk. By construction h(y|mk) > 0 for all y ∈ [sk−1, sk] and∫ sk
sk−1

h(y|mk) = 1. Now, since k′ < k, we have sk′ ≤ sk−1. Then, since F (x|y) respects first
order stochastic dominance, we have:

G(x|mk) =

∫ sk

sk−1

h(y|mk)F (x|y)dy ≤ F (x|sk−1) ≤ F (x|sk′) ≤
∫ sk′

sk′−1

h(y|mk)F (x|y)dy = G(x|mk′)

Step 2: The receiver’s strategy. Next, we compute the receiver’s optimal strategy, given the
beliefs induced by the sender’s conjectured strategy. The receiver’s expected utility from
choosing action a ∈ [0, 1] after receiving message mk is −

∫
x∈X (x− a)2 g (x|mk) dx. The

sender chooses ak to maximize her expected utility. We can compute this maximizer by
taking first-order conditions:

−2

∫ 1

0

(x− a) g (x|mk) dx = 0

a∗k =

∫ 1

0

xg (x|mk) dx

since
∫
g (x|mk) dx = 1. For each k = 1, .., K, let Ak (s) = a∗k, and note that Ak (s) is

continuous in s. Let A (s) = (A1 (s) , ..., AK (s)). Additionally, since the receiver’s belief
functions respect first order stochastic dominance, it must be that: A1 (s) ≤ ... ≤ AK (s).
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To see this, note that, suppose k′ < k. Then:

a∗k =

∫ 1

0

xg(x|mk)dx = [xG(x|mk)]
1
0 −

∫ 1

0

G(x|mk)dx

= 1−
∫ 1

0

G(x|mk)dx

≥ 1−
∫ 1

0

G(x|mk′)dx

=

∫ 1

0

xg(x|mk′)dx = a∗k′

Step 3: The sender’s strategy. Next, we must verify that the sender’s strategy is optimal,
given the receiver’s action profile and the sender’s beliefs. The sender chooses the message
that maximizes his ex ante utility, anticipating the receiver’s action, and given his beliefs
about the true state. We have: µ (y) = argmaxmk∈M

{
−
∫
x∈X (x− Ak (s))

2 f (x|y) dx
}
.

Fix some y ∈ [0, 1], and suppose mk is an optimal message. For any k′ s.t. Ak′(s) = Ak(s),
it must that mk′ is also an optimal message. Suppose there is a k′ < k s.t. Ak′(s) < Ak(s).
Then, since mk is optimal, we must have:∫

x∈X
(x− Ak (s))

2 f (x|y) dx ≤
∫
x∈X

(x− Ak′ (s))
2 f (x|y) dx∫

xf (x|y) dx ≥ 1

2
(Ak (s) + Ak′ (s))

Since this must be true for every such k′ < k, and A1 ≤ ... ≤ AK , we have:
∫
xf (x|y) dx ≥

1
2
(Ak (s) + Ak− (s)), where k− = max{k′|Ak′ < Ak} (and k− = k − 1 if Ak−1 < Ak). By a

similar argument, it must be that:∫
xf (x|y) dx ≤ 1

2
(Ak (s) + Ak+ (s))

where k+ = min{k′|Ak′ > Ak} (and k+ = k + 1 if Ak < Ak+1). Let ψ (y) =∫
xf (x|y) dx denote the sender’s assessment of the expected state, given signal y. We have

1
2
(Ak (s) + Ak− (s)) ≤ ψ (y) ≤ 1

2
(Ak (s) + Ak+ (s)).

By the continuity in the setup, it must be that ψ(y) is continuous in y. Addi-
tionally, the fact that F (x|y) respects first-order stochastic dominance implies that
ψ(y) is strictly increasing. Hence it is a best response to report mk if y ∈[
ψ−1

(
1
2
(Ak (s) + Ak− (s))

)
, ψ−1

(
1
2
(Ak (s) + Ak+ (s))

)]
.
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Notice that if A1 < A2 < · · · < AK , then the best response intervals are non-overlapping;
the sender’s optimal strategy partitions the signal space. If Ak = Ak′ , then the intervals for
which mk and mk′ are best responses coincide. Each signal in the common interval could
be assigned to either message, or the sender could randomize between the message. To this
extent, the sender’s strategy need not partition the signal space.

However, the sender is free to select an assignment of signals to messages that does partition
the signal space. In particular, let Sk (s) = ψ−1

(
1
2
(Ak (s) + Ak+1 (s))

)
for k = 1, ..., K − 1,

and let S0 (s) = 0 and SK (s) = 1. Then S0 ≤ S1 ≤ · · · ≤ Sk. Note that Sk is continuous in s.
Given the preceding analysis, it must be that message mk is optimal if y ∈ [Sk−1 (s) , Sk (s)].
Let S (s) = (S0 (s) , .., SK (s)).

Step 4: Consistency. We need to show that we can conjecture a threshold strategy s that is
consistent with optimal behavior by the sender. I.e. we need to show that there exists an
s such that s = S (s) — i.e. that s is a fixed point of the mapping S : Σ → Σ. Since this
mapping is continuous over a compact space, Brouwer’s fixed point theorem ensures that it
admits a fixed point. Hence, an equilibrium exists.

Finally, we must show that sk−1 < sk in any equilibrium with fixed point strategies. (This
guarantees that each message is transmitted with positive probability.) Suppose not. I.e.
suppose there is a fixed point of the mapping for which sk−1 = sk. Then Ak (s) = ψ (sk).
Next note that∫

x∈X
(x− a)2 f (x|y) dx = (ψ (y)− a)2 +

∫
(x− ψ (y))2 f (x|y) dx

which is simply the usual mean-square error decomposition, since ψ (y) = EX|Y=y [X]. For
message k with a = Ak (s), this expression is minimized when y = sk. Moreover, for any k′

s.t. Ak′ (s) ̸= Ak (s), this expression is strictly larger when µ = mk′ . Then by continuity mk

must be optimal for y ∈ (sk−1, sk−1 + ε) where ε > 0 is small enough. Hence sk > sk−1, and
so Ak(s) > Ak−1(s) for each k.

Optimal Equilibria. Next, we show that any optimal equilibrium must induce the agent
to take K distinct actions. To do so, take an equilibrium (µ, α), not necessarily in threshold
strategies, that induces L < K distinct actions {a1, . . . , aL}. Let aL denote the highest
action taken in such an equilibrium. By the argument in steps 2 and 3 above, it must be
that aL < 1. Additionally, by step 3, it must be that µ(y) = mL whenever y > ψ(aL).
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It suffices to find a different set of strategies (not necessarily an equilibrium) that induces
L+1 distinct actions, and which achieves a lower ex ante expected loss than the equilibrium
(µ, α). Given the common values framework, if a set of such strategies exists, then there
must be an equilibrium that induces L+1 distinct actions that does better as well. Consider
the strategies: (µ′, α′) where: (i) the induced actions are {a1, . . . , aL+1} with a′k = ak for
k = 1, . . . , L and a′L+1 = 1, and (ii) µ′(y) = µ(y) whenever y ≤ ψ−1

(
aL+1

2

)
and µ′(y) = mL+1

whenever y > ψ−1
(
aL+1

2

)
. Recall that ℓ(µ, α) is the ex ante expected loss under strategy

(µ, α). Then:

ℓ(µ′, α′) = ℓ(µ, α) +

∫ 1

0

∫ 1

ψ−1(aL+1

2 )

[
(x− 1)2 − (x− aL)

2
]
f(x|y)q(y)dydx

= ℓ(µ, α)− (1− aL)

∫ 1

ψ−1(aL+1

2 )

[∫ 1

0

[
x− aL + 1

2

]
f(x|y)dx

]
· q(y)dy

= ℓ(µ, α)− (1− aL)

∫ 1

ψ−1(aL+1

2 )

[
ψ(y)− aL + 2

2

]
q(y)dy

< ℓ(µ, α)

where the final inequality makes use of the fact that ψ(y) > aL+1
2

whenever y > ψ−1
(
aL+1

2

)
.

Then since ℓ(µ, α) < ℓ(µ′, α′) < 0, the expected loss under (µ′, α′) is smaller.

In Step 4, we showed that an equilibrium exists in which K distinct actions are induced, and
that such an equilibrium will be in threshold strategies. (Since the sender chooses from a
finite set of K messages, it cannot be that more than K actions are induced in equilibrium.)
By the preceding analysis, we showed that an optimal equilibrium induces K distinct actions.
Hence, an optimal equilibrium exists, and it is in threshold strategies.

Uniqueness. The proof of uniqueness is adapted from Crawford and Sobel (1982). Let
q(y) =

∫ 1

0
q(y|x)f(x)dx denote the unconditional density of the signal y. We can verify that

g(x|mk) =
∫ sk
sk−1

q(y)∫ sk
sk−1

q(γ)dγ
f(x|y)dy. In equilibrium, we know that the receiver will choose ak

to satisfy:

ak =

∫ 1

0

xg(x|mk)dx =

∫ sk

sk−1

q(y)∫ sk
sk−1

q(γ)dγ

(∫ 1

0

xf(x|y)dx
)
dy

= E [y|y ∈ (sk−1, sk)]

=
sk−1 + sk

2
(1)
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where the second line uses the assumption that
∫ 1

0
xf(x|y)dx = E[x|y] = y, and the third line

uses the assumption that the unconditional distribution of y is uniform. Similarly, we know
that the sender will choose sk to satisfy:

∫ 1

0
(ak − x)2f(x|sk)dx =

∫ 1

0
(ak+1 − x)2f(x|sk)dx.

Since ak+1 ̸= ak, this simplifies to
sk =

ak + ak+1

2
(2)

where again we use the assumption that E[x|sk] = sk.

Let s0 = 0 be given and specify some a1 > s0. Let (s0, . . . , sK) and (a1, . . . , aK) be sequences
that satisfy (1) and (2). Given sk−1, (1) determines sk as a function of ak, i.e. sk = 2ak−sk−1;
and given ak, (2) determines ak+1 as a function of sk, i.e. ak+1 = 2sk−ak. This implies that:

sk+1 = 2ak+1 − sk = 2[2sk − ak]− sk = sk + 2(sk − ak)

Using this fact and (2), we have sk+1−ak+1 = sk−ak, and so by induction sk−ak = s1−a1.
Also, by (1) and since s0 = 0, s1 = 2a1. Hence, by induction, we have sk = 2ka1. Notice that
the sk’s are monotonically increasing in a1. (Crawford and Sobel refer to this as Condition
(M).) Hence the choice of a1 pins down all the other terms. Additionally, since sK = 1,
we must have a1 = 1

2K
. But this implies that the communication game admits a unique

equilibrium.

Example in Detail. We construct the example in four steps. First, we determine the
agents’ belief functions. Second, we determine the receiver’s optimal action, given her beliefs
for an arbitrary strategy by the sender. Third, we determine the sender’s optimal strategy
given her beliefs, anticipating the receiver’s optimal response. These three steps together
characterize the equilibrium. Additionally, we construct the truth degree functions.

Step 1: The agents’ beliefs. Suppose x ∼ U [0, 1] and let the perception technology
generate a signal y ∼ U

[
x

1+2ε
, x+2ε
1+2ε

]
, where ε < 3

8
denotes the signal precision. Notice that

this implies y ∈ [0, 1].

Start with the sender’s posterior belief about the true state after receiving signal y. By
Bayes’ rule, we have the following: If y < 2ε

1+2ε
, then

f (x|y) =

 1
(1+2ε)y

if x ∈ [0, (1 + 2ε)y]

0 otherwise.
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If instead y ∈
[

2ε
1+2ε

, 1
1+2ε

]
, then

f (x|y) =

 1
2ε

if x ∈ [(1 + 2ε)y − 2ε, (1 + 2ε)y]

0 otherwise.

and finally if y > 1
1+2ε

, then

f (x|y) =

 1
(1+2ε)(1−y) if x ∈ [(1− 2ε)y − 2ε, 1]

0 otherwise.

Now turn to the receiver’s beliefs after receiving a given message. Suppose K = 3, so that
3 messages are available, and let s1 and s2 be the thresholds that delineate the use of these
messages. We use Bayes’ Rule to compute the receiver’s beliefs after receiving message
i ∈ {1, 2, 3}. For concreteness, consider her beliefs after receiving message m1 (which implies
that the signal y was in [0, s1]). By Bayes’ Rule, we have:

g (x|m1) =

∫ s1
0
q (y|x) dy∫

z∈X

[∫ s1
0
q (y|z) dy

]
dz

Then, using the fact that q(y|x) = 1
2ε

for y ∈
[

x
1+2ε

, x+2ε
1+2ε

]
(and 0 otherwise), we have:

∫ s1

0

q(y|x)dy =


1 if x < (1 + 2ε)s1 − 2ε

(1+2ε)s1−x
2ε

if x ∈ [(1 + 2ε)s1 − 2ε, (1 + 2ε)s1]

0 if x > (1 + 2ε)s1

Assume that s1 > 2ε
1+2ε

. (Since ε < 3
8

and s1 < 1
2
, we know that (1+2ε)s1 < 1.) This implies

that: ∫
z∈X

[∫ s1

0

q (y|z) dy
]
dz =

∫ (1+2ε)s1−2ε

0

dx+

∫ (1+2ε)s1

(1+2ε)s1−2ε

(
(1 + 2ε)s1 − x

2ε

)
dx

= (1 + 2ε)s1 − ε
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and so, we have:

g (x|m1) =


1

(1+2ε)s1−ε x ∈ [0, (1 + 2ε)s1 − 2ε]

(1+2ε)s1−x
2ε[(1+2ε)s1−ε] x ∈ [(1 + 2ε)s1 − 2ε, (1 + 2ε)s1]

0 x ∈ [(1 + 2ε)s1, 1]

We can construct g (x|m2) and g (x|m3) similarly.

Step 2: The receiver’s optimal actions. Let ai be the action chosen by the receiver
following the receipt of message mi. Since the problem is perfectly symmetric, we know that
s2 = 1− s1, that a3 = 1− a1 and a2 =

1
2
. Hence, it suffices to characterize a1 as a function

of s1.

Following message m1, the receiver chooses the action which corresponds to the expected
true state conditional upon the message received. We have:

a1(s1) =

∫
X

xg (x|m1) dx

=

∫ (1+2ε)s1−2ε

0

x

(1 + 2ε)s1 − ε
dx+

∫ (1+2ε)s1

(1+2ε)s1−ε
x

(1 + 2ε)s1 − x

2ε[(1 + 2ε)s1 − ε]
dx

=
3[(1 + 2ε)s1 − ε]2 + ε2

6[(1 + 2ε)s1 − ε]

Step 3: The sender’s optimal messages. Let ψ (y) =
∫
xf (x|y) dx, which is the sender’s

assessment of the expected state, after receiving signal y. Take y ∈
[

2ε
1+2ε

, 1
1+2ε

]
. Then we

know that:

ψ (y) =

∫ (1+2ε)y

(1+2ε)y−2ε

x

2ε
dx = (1 + 2ε)y − ε

By construction, the sender must be indifferent between sending either message 1 or message
2 after receiving signal s1. Hence, s1 satisfies ψ (s1) = 1

2
(a1 + a2). Then, assuming s1 ∈[

2ε
1+2ε

, 1
1+2ε

]
, we have:

(1 + 2ε)s1 − ε =
1

2

[
3[(1 + 2ε)s1 − ε]2 + ε2

6[(1 + 2ε)s1 − ε]
+

1

2

]
s1 =

(1 + 6ε) +
√
1 + 4ε2

6(1 + 2ε)
=

1

6
+

4ε+
√
1 + 4ε2

6(1 + 2ε)

We are left to confirm that s1 so defined indeed satisfies s1 ∈
[

2ε
1+2ε

, 1
1+2ε

]
. It is easily
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confirmed that this will be the case provided that ε < 3
8
.

In summary, we have: (s∗1, s
∗
2) =

(
1+6ε+

√
1+4ε2

6
, 5+6ε−

√
1+4ε2

6

)
and (a∗1, a

∗
2, a

∗
3) =(√

1+4ε2

3
− 1

6
, 1
2
, 7
6
−

√
1+4ε2

3

)
.

Step 4: Characterizing the truth-degree functions Finally, we characterize the core
and support of each message, and the associated truth-degree functions. The support sets
are:

SR (m1) =

[
0,

1 + 6ε+
√
1 + 4ε2

6

]

SR (m2) =

[
1− 6ε+

√
1 + 4ε2

6
,
5 + 6ε−

√
1 + 4ε2

6

]

SR (m3) =

[
5− 6ε−

√
1 + 4ε2

6
, 1

]

The core sets are:

CR (m1) =

[
0,

1− 6ε+
√
1 + 4ε2

6

]

CR (m3) =

[
5 + 6ε−

√
1 + 4ε2

6
, 1

]

If ε > 3−
√
3

8
, then CR (m2) = ∅; else CR (m2) =

[
1+6ε+

√
1+4ε2

6
, 5−6ε−

√
1+4ε2

6

]
. Finally, the

truth-degree functions are generally given by ϕi (x) =
∫ sk
sk−1

q (y|x) dx. Hence, we have:

ϕ1 (x) =


1 x ∈

[
0, 1−6ε+

√
1+4ε2

6

]
1+6ε+

√
1+4ε2−6x
12ε

x ∈
[
1−6ε+

√
1+4ε2

6
, 1+6ε+

√
1+4ε2

6

]
0 x ∈

[
1+6ε+

√
1+4ε2

6
, 1
]

ϕ3 (x) =


0 x ∈

[
0, 5−6ε−

√
1+4ε2

6

]
6x−(5−6ε−

√
1+4ε2)

12ε
x ∈

[
5−6ε−

√
1+4ε2

6
, 5+6ε−

√
1+4ε2

6

]
1 x ∈

[
5+6ε−

√
1+4ε2

6
, 1
]
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If ε < 3−
√
3

8
, then we have:

ϕ2 (x) =



0 x ∈
[
0, 1−6ε+

√
1+4ε2

6

]
6x−(1−6ε−

√
1+4ε2)

12ε
x ∈

[
1−6ε+

√
1+4ε2

6
, 1+6ε+

√
1+4ε2

6

]
1 x ∈

[
1+6ε+

√
1+4ε2

6
, 5−6ε−

√
1+4ε2

6

]
(5+6ε−

√
1+4ε2)−6x

12ε
x ∈

[
5−6ε−

√
1+4ε2

6
, 5+6ε−

√
1+4ε2

6

]
0 x ∈

[
5+6ε−

√
1+4ε2

6
, 1
]

By contrast, if ε ∈
[
3−

√
3

8
, 3
8

]
, then we have:

ϕ2 (x) =



0 x ∈
[
0, 1−6ε+

√
1+4ε2

6

]
6x−(1−6ε−

√
1+4ε2)

12ε
x ∈

[
1−6ε+

√
1+4ε2

6
, 5−6ε−

√
1+4ε2

6

]
3−

√
1+4ε2

6ε
x ∈

[
5−6ε−

√
1+4ε2

6
, 1+6ε+

√
1+4ε2

6

]
(5+6ε−

√
1+4ε2)−6x

12ε
x ∈

[
1+6ε+

√
1+4ε2

6
, 5+6ε−

√
1+4ε2

6

]
0 x ∈

[
5+6ε−

√
1+4ε2

6
, 1
]

Proof of Lemma 1. Follows immediately from the continuity of Q (y|x) in x. Recall that
ϕk (x) =

∫ sk
sk−1

q (y|x) dy = Q (sk|x)−Q (sk−1|x). Then since Q (·|x) is continuous in x, so is
ϕk.

Proof of Lemma 2. Follows as a well known consequence of the monotone likelihood ratio
property. To see this, first note that Φk (x) =

∑k
j=1 ϕk (x) =

∑k
j=1

∫ sj
sj−1

q (y|x) dy = Q (sk|x).
Take x1 > x0. It suffices to show that Q (sk|x1) ≤ Q (sk|x0) for every k.

By the monotone likelihood ratio property, we know that q(y0|x1)
q(y0|x0) ≤

q(y1|x1)
q(y1|x0) whenever y1 > y0,

which we can rewrite as: q (y0|x1) q (y1|x0) ≤ q (y1|x1) q (y0|x0). This implies:∫ y1

0

q (y0|x1) q (y1|x0) dy0 ≤
∫ y1

0

q (y1|x1) q (y0|x0) dy0

Q (y1|x1) q (y1|x0) ≤ Q (y1|x0) q (y1|x1)
Q (y|x1)
Q (y|x0)

≤ q (y|x1)
q (y|x0)
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Similarly, we have:∫ 1

y0

q (y0|x1) q (y1|x0) dy1 ≤
∫ 1

y0

q (y1|x1) q (y0|x0) dy1

q (y0|x1) [1−Q (y0|x0)] ≤ q (y0|x0) [1−Q (y0|x1)]
q (y|x1)
q (y|x0)

≤ 1−Q (y|x1)
1−Q (y|x0)

Combining these gives:
Q (y|x1)
Q (y|x0)

≤ 1−Q (y|x1)
1−Q (y|x0)

for every y. This implies that Q (y|x1) ≤ Q (y|x0) for every y, which completes the proof.

To show that F (x|y) respects first-order stochastic dominance, it suffices to show that the
conditional densities f(x|y) have the monotone likelihood ratio property. (If so, we can
simply repeat the above method.) To show that MLRP is satisfied, take x1 > x0 and
y1 > y0, and notice that:

f(x1|y1)
f(x0|y1)

=
f(x1)q(y1|x1)
f(x0)q(y1|x0)

≥ f(x1)q(y0|x1)
f(x0)q(y0|x0)

=
f(x1|y0)
f(x0|y0)

where the middle inequality follows from the MLRP of q.
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